
Copyright 1998 by Mekatronix Corporation

TJ Pro Robot
Education Manual

Using IC
By

Keith L. Doty

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

2

AGREEMENT
This is a legal agreement between you, the end user, and Mekatronix™. If you do not
agree to the terms of this Agreement, please promptly return the purchased product for a
full refund.

1. Copy Restrictions. No part of any Mekatronix™ document may be reproduced in any

form without written permission of Mekatronix™. For example, Mekatronix™ does
not grant the right to make derivative works based on these documents without
written consent.

2. Software License. Mekatronix™ software is licensed and not sold. Software

documentation is licensed to you by Mekatronix™, the licensor and a corporation
under the laws of Florida. Mekatronix™ does not assume and shall have no obligation
or liability to you under this license agreement. You own the diskettes on which the
software is recorded but Mekatronix™ retains title to its own software. You may not
rent, lease, loan, sell, distribute Mekatronix™ software, or create derivative works for
rent, lease, loan, sell, or distribution without a contractual agreement with
Mekatronix™.

3. Limited Warranty. Mekatronix™ strives to make high quality products that function

as described. However, Mekatronix™ does not warrant, explicitly or implied, nor
assume liability for, any use or applications of its products. In particular,
Mekatronix™ products are not qualified to assume critical roles where human or
animal life may be involved. For unassembled kits, you accept all responsibility for the
proper functioning of the kit. Mekatronix™ is not liable for, or anything resulting
from, improper assembly of its products, acts of God, abuse, misuses, improper or
abnormal usage, faulty installation, improper maintenance, lightning or other incidence
of excess voltage, or exposure to the elements. Mekatronix™ is not responsible, or
liable for, indirect, special, or consequential damages arising out of, or in connection
with, the use or performances of its product or other damages with respect to loss of
property, loss of revenues or profit or costs of removal, installation or re-installations.
You agree and certify that you accept all liability and responsibility that the products,
both hardware and software and any other technical information you obtain has been
obtained legally according to the laws of Florida, the United States and your country.
Your acceptance of the products purchased from Mekatronix™ will be construed as
agreeing to these terms.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

3

MANIFESTO
 Mekatronix™ espouses the view that the personal autonomous agent will usher in a
whole new industry, much like the personal computer industry before it, if modeled on the
same beginning principles:
• Low cost,
• Wide availability,
• Open architecture,
• An open, enthusiastic, dynamic community of users sharing information.

Our corporate goal is to help create this new, exciting industry!

WEB SITE: http://www.mekatronix.com
Address technical questions to tech@mekatronix.com
Address purchases and ordering information to an authorized Mekatronix
Distributor http://www.mekatronix.com/distributors

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

4

TABLE OF CONTENTS
1 SCOPE ..6
2 INTRODUCTION..6

2.1 Exactly What is Interactive C?...7
3 TJ PRO™ EXPERIMENTAL SETUP..8

3.1 About Batteries and Bench Testing Programs ..8
3.2 Installing TJPED01 Directories ...9
3.3 Executing IC for the First Time ...9

4 INTERACTING WITH IC ...10
4.1 Calculating with IC ...10
4.2 Listing Files ..11
4.3 Loading and Unloading Files...11
4.4 System Time Variables..12

5 TOUR DE ROBOT WITH IC...13
5.1 Motor Control ...13
5.2 Bumper Sensor ..14
5.3 Infrared Proximity Sensors ..15

6 SOME POSSIBLE BEHAVIORSS..16
7 PROGRAMMING BEHAVIOURS ..16
8 ADVICE ON DEVELOPING BEHAVIORS..16

8.1 Vulcan Mind Meld ..17
8.2 Relative calibration of sensors of the same type..17
8.3 Adjusting to Ambient Conditions ..17
8.4 Create simple behaviors...18
8.5 Build on simple behaviors ...18
8.6 Integrating Behaviors ..18

9 RECOMMENDED STRUCTURE FOR YOUR C CODE...18
10 TJ PRO™ EXPERIMENTS ...21

10.1 Robot Connections During Program Development ..22
10.2 Motor Experiments ...22

10.2.1 Calibrating the Servos ..22
10.2.2 Motor Angular Speed Characteristics ...23
10.2.3 Writing an IC Program...24
10.2.4 Robot Translation...29
10.2.5 Robot Spin ...33

10.3 Bumper Experiments ..34
10.4 Terminal Output without IC..36
10.5 Infrared Experiments ..38

11 APPLICATIONS ...40
11.1 Programming a Behavior from a Specification ..40
11.2 Application Program Descriptions ..41

12 MULTITASKING BEHAVIORS ...49
12.1 IC Multitasking in Operation ..50
12.2 Multitasking in Robotics ...54

13 FURTHER EXPLORATION..56

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

5

LIST OF FIGURES
Figure 1 A template standard for lexical structuring of your TJ PRO™ C-Code. The

correctness of your code does not depend upon adhering to this standard. Rather, it
makes it easier for you and other people to be able to read and understand the code.
.. 20

Figure 2. A C-function written according to this standard makes the code more readable
and maintainable. In the description block outlined by the asterisks, the possible input
and output parameter sources are listed. Most functions use only a small subset.
Those not used can be deleted, but some programmers prefer to keep them there with
a None specifier (I must confess that I am not consistent). Many programmers find
the asterisks boxes a nuisance, so feel free to drop them!.. 21

Figure 3 This program turns the both motors on 100 percent for 10 seconds and then
stops them. .. 26

Figure 4. Adding a persistent variable to the program in Figure 3. 28
Figure 5. This code urges the robot to move forward... 45
Figure 6. This code adjusts the IR threshold when bumper contact occurs...................... 46
Figure 7. Structure of an IC program to multitask five processes. The code for each

process is shown in the next figure. .. 51
Figure 8. Each of these four multitasked processes take different amounts of time to

output two strings of two characters each. The msleep()command forces the
processes to consume more than the allotted five ticks. .. 52

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

6

1 SCOPE
This manual is intended for teachers, educators, university and advanced high school
students, hobbyists, researchers and anyone else interested in advancing the infrastructure
of robotics and advanced technology in our society. The goal of this manual is to enable
teachers and professors, from middle school through the university level, to develop
exciting, stimulating, and entertaining instructional materials for hands-on laboratories
using embodied, intelligent, autonomous mobile robots.

This manual provides exercises and applications of Interactive C (IC) to the TJ PRO™
autonomous mobile robot. A commercial, Windows version of IC can be purchased from a
Mekatronix distributor (http://www.mekatronix.com/distributors) for a nominal fee. Only
the Windows version will be discussed in this manual. An older, free DOS version can be
downloaded from the EEL5666 class web site at the University of Florida:
http://www.mil.ufl.edu/imdlf.html. While there, also download the Interactive C Manual,
Chapter 6 of the MIT 6.270 notes. A quick read of the IC Manual will enable you to
better understand this manual. As you read this manual, you can conveniently refer to the
relevant sections of the IC Manual for further assistance.

Caution!
 Do all robot moving experiments on a tile, wooden, or otherwise smooth
flat surface!

2 INTRODUCTION
An autonomous mobile robot, similar to its distant carbon-based life forms, exhibits three
principal features, 1) machine actuation, 2) machine perception, and 3) machine cognition.
In anthropomorphic terms, these translate to acting, sensing, and thinking. The
philosophical and scientific issues as to whether a machine can actually think, perceive or
act with intent is beyond the scope of this manual.

Programming behaviors is what autonomous mobile robots is all about, or, at least a
substantial part of what it is all about! Without being technical, a behavior is whatever the
robot does. The emphasis is on action. From the engineering viewpoint, you want to
program behaviors that produce useful results. Make a robot vacuum cleaner, or a robot
valet. With an artistic eye, you want to program behaviors that esthetically please or
excite. Why not make TJ PRO™ dance? Have it perform a ballet on wheels.

From the scientific perspective you can inquire about the scope of machine intelligence
and test your theories on a real robot. Out of intellectual curiosity and the creation urge,
you might want to develop physically embodied animats, or artificial animals. Develop
your own ecology with predator robots that drain the prey robots’ batteries and prey
robots that hide and avoid predator robots and seek battery recharging stations as food
sources. Or, you can tailor a robot to enter many of the robot contests around the world.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

7

Many of these contests require manipulation and sensors not supplied with TJ PRO™.
But, with one or more Mekatronix MSCC11 single chip computers controlling the
additional sensors and servo driven manipulation devices, a TJ PRO™ can often be
expanded to meet contest requirements.

This manual assumes the reader has read the IC Manual and has it at hand. The text also
presumes some capability in C programming and does not attempt to teach that skill. You
may want to refer to the latest edition of The C Programming Language by B.W.
Kernighan and D.M. Ritchie to brush up on your C programming skills, or even to learn
C. Since some of the exercises illustrate elementary programming concepts, the skilled C
programmer can skip the text and go straight to the code and begin playing. The extra
programming development makes the manual easier to read and understand by individuals
with little knowledge of C or Interactive C. By copying and modifying the programs here,
those unfamiliar with C may actually compose useful IC programs, but programming
independent solutions based only on what you read and learn here may be difficult.

2.1 Exactly What is Interactive C?
To quote from the IC manual,

“Interactive C (IC for short) is a C language consisting of a compiler (with interactive
command-line compilation and debugging) and a run-time machine language module.
IC implements a subset of C… IC works by compiling into pseudo-code for a custom
stack machine, rather than compiling directly into native code for a particular
processor. This pseudo-code (or p-code) is then interpreted by the run-time machine
language program.”1

This virtual p-code machine allows interpreted execution with run-timer error checking.
The resulting compiled p-code consumes considerably less storage than assembly code
that performs the same functions. The run-time module and the stacked-based virtual p-
code machine also enables multi-tasking for sophisticated behavior based programming.
Examples will illustrate all these advantages. The typical disadvantage of this approach,
loss of processing speed, cause little to no performance degradation in many autonomous
robot behavior programs.

Caution
Interactive C is not a Standard ANSI C, so be careful of language
limitations using IC.

1 IC Manual, pp1 (pp119 of the 6.270 notes).

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

8

3 TJ PRO™ EXPERIMENTAL SETUP
You will need a PC running Windows, IC for Windows, a Mekatronix MB2325 serial
communications board, a serial cable, a 6-wire serial cable, and a small box to hold TJ
PRO™’s wheels off a desktop surface. Refer to the TJ PRO™ Users Manual2 for
instructions on how to configure these components into a working system. This manual
assumes you have
1) Installed IC and the TJ PRO™ distribution software,
2) Read and understood the TJ PRO™ Users Manual and have it available as a handy

reference,
3) The IC manual readily available, and
4) Connected the robot through the six wire serial cable, the MB2325 Communications

board and a serial cable to your PC.

The TJ PRO™ robot does not move well on rugs or rough surfaces. You will also get
longer battery life if you restrict the robot motion experiments to smooth flat surfaces.

Caution!
 Do all robot moving experiments on a tile, wooden, or otherwise smooth
flat surface!

3.1 About Batteries and Bench Testing Programs
Only use six AA nickel-cadmium rechargeable batteries to power the robot. Always keep
the robot’s batteries charged. While bench testing, keep the wheels off the bench and the
charger plugged into the robot. This will insure many hours of testing and debugging
without having to wait six hours for the batteries to charge or the hassle and expense of
changing out the batteries. When leaving the bench for extended periods of time, turn the
robot power off with the charger plug into the robot. Leave the DOWNLOAD/RUN switch in
RUN mode. The charger will keep the memory indefinitely, so if IC is in memory, it will be
there when you power up again. This saves the hassle, minimal to be sure, of repeating a
first-time load of IC into memory every time you begin experimenting anew (refer to
Section 3.3).

If the power light suddenly disappears anytime during experimentation with the robot, the
most likely problem is that rapid, jerky motion of the robot has loosened the batteries in
the battery- pack. Simply reseat the batteries firmly into the pack and power will usually
come up. If reseating loose batteries does not fix the problem, check for a loose power
connection to the computer board or for broken battery wires. If power problems persist,
check the battery-pack voltage and the computer-board voltage to make sure power is
actually available. You should get a nominal 6 to 7 volts from the battery-pack, depending
upon level of charge, and the regulated computer voltage should be about 5 volts. A

2 You can download all Mekatronix manuals free from the web site: http://www.mekatronix.com

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

9

battery-pack reading of 5.4volts indicates the batteries are discharged and require
recharging or exchanged out with fresh batteries.

When the robot looses power, for whatever reason, you will have to perform a first time
load of IC again, a slightly tricky process (refer to Section 3.3).

3.2 Installing TJPED01 Directories
The distribution disk, proiced01, which comes with this manual, contains four
directories. Throughout the manual, I will refer to these directories as sources of
programs, which are either solutions to problems or examples.

Execute the batch file install_proiced01.bat to transfer the four directories

 TJPRO_APPLICATIONS
 TJPRO_Experiments
 TJPRO_Libsrc
 TJPRO_Utilities

into the IC directory. Specify a path to the IC directory as an argument to the batch file.
The default path is c:\ICtjp. Even more simply, just drag and drop the directories with
a mouse.

3.3 Executing IC for the First Time
IC was designed originally to execute on the MIT Handy Board, which has a rather
obscure hack on the serial input. IC takes advantage of that hack, but it makes for strange
initial loading of the system on TJ Pro.

Turn on the robot, place the DOWNLOAD/RUN toggle switch into DOWNLOAD. From
Windows execute IC. IC will give an error message that the board is not responding. Not
to worry! The board is not responding because you have not had a chance to load the p-
coder and relevant libraries into the robot. Select the Yes button in the IC error Window
to configure the board. The system is configured to enable COM1 for serial
communication. If you wish to use another COM port select it on the screen that now
appears. To make your selection the default, you will need to change the Port = 1
command in the ic.ini file to Port = n, where n is the COM port number you
picked. Next, select the Download Pcode button in the opened IC Window. IC will now
open the Libs directory. Select the file TJ-pro.icd file to open. Press the red RESET

button on the robot and select the OK button in the window. You will observe a flurry of
loading activity with the green LEDs on the MB2325 board rapidly flashing, and then
another error message☺! IC just realizes there is no p-coder program to communicate
with. Place the robot DOWNLOAD/RUN toggle switch into RUN, press the red RESET button
and select the Yes button in the IC errorWindow. IC will then load the remaining code
onto the robot and you are ready to go.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

10

As long as you keep power to the TJ PRO™ memory, the p-coder will not have to be
reloaded and you can turn the power switch on-and-off at will. If the batteries drain or you
otherwise overwrite memory you will have to repeat the first time load procedure
described above.

4 INTERACTING WITH IC
Before writing any robot programs lets look at some of the features of an interactive
environment. You now have IC up and running in Windows. Open this document in
Windows95 at the same time and tile the two applications horizontally. As you read this
manual, you can jump back and forth between applications and do the exercises as you
read them. All IC command lines are terminated and then executed when you type the
Enter key. I will not remind you of this in the exercises, but it will soon become second
nature to you and should not cause any confusion.

4.1 Calculating with IC
You can perform complex mathematical computations using IC by typing the expressions
in the command window at the bottom.

For example, in the command window of IC type

1+2

IC responds with

IC> 1+2
Downloaded 7 bytes (addresses C200-C206)
<int> 3

The answer equals the integer three (<int> 3), which may come as no surprise. But,
how about

sin(45.0*3.14159/180.)

which yields

IC> sin(45.0*3.14159/180.)
Downloaded 18 bytes (addresses C200-C211)
<float> 0.707106

Those of you mathematically inclined recognize the sin of 45 degrees. Of interest is that all
numbers must be cast as floating point numbers, hence, the decimal point appearing in all
the numbers.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

11

As a final example, compute the sigmoid function

1./(1.+exp(-0.2))

to get

IC> 1./(1.+exp(-0.2))
Downloaded 19 bytes (addresses C200-C212)
<float> 0.549834

Using IC as a sophisticated calculator has nothing to do with TJ PRO™ or robotics, but it
does illustrate how you can perform calculations as needed when playing with your robot!

4.2 Listing Files
You can see what library files you have loaded onto TJ PRO™ by typing

list files

in the IC command window. IC responds with

IC> list files
C:\ICTJP\libs\lib_rw11.c
C:\ICTJP\libs\twoservo.c
C:\ICTJP\libs\motorp.c
twoservo.icb
#done

These are exactly the files you loaded earlier when setting up IC using the file TJ-pro.icd.

4.3 Loading and Unloading Files
The command

load C:\ICtjp\tjpcode\tjpro1.c

will cause the C program tjpro1.c to be loaded onto the robot. Type list files
to see the addition of the file tjpro1.c to the list of library files. To unload this file type

unload tjpro1.c

Now, type list files and observe that the file tjpro1.c is no longer in the
robot’s memory.

We will execute this file later. If you cannot wait, disconnect the robot, take the robot
from your desk work area to the floor and press the red RESET button. This program will

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

12

run forever, so to continue with this manual, turn the robot off, place it on a stand so the
wheels do not touch any surface, connect the serial cable, turn the robot on and unload the
program. The robot will stop executing the program and be ready for more functions or
programs.

You can also load a program from the IC window by selecting File and then Download
File. I prefer this method since I do not have to type paths. No unload window
command exist. One way to unload a function or program without actually typing out the
command is to execute a list file command to get the right name. Copy the name
(select and copy with the mouse) from the IC console window and paste it into the
command line. Judicious maneuvering with the up-arrow and down-arrow line editing keys
also speeds up command line typing.

4.4 System Time Variables
To see how many seconds have elapsed since you started your IC session, execute the
function

seconds()

Reset the system clock with the function

reset_system_time()

and then execute seconds()again. The number will now be quite low because the clock
started ticking from zero when you reset it. By the way the clock will never overflow in
your lifetime. The time it takes to count to 1038

 clock ticks at a millisecond rate far, far
(and I mean FAR) exceeds the known age of the Universe!

The millisecond clock is another system clock that counts, you guessed it, in milliseconds
instead of seconds. Execute the function mseconds(). Clearly, it too will never
overflow during any session! Execute several in rapid succession to see how it rapidly
changes.

The sleep(<float_seconds>)function puts the robot to sleep for
<float_seconds> seconds. If you execute this function, say sleep(10.0), the
robot will not respond to any commands from IC for 10 seconds. Try doing a calculation
of 1+2 immediately after typing sleep(10.0). What happened?3

3 IC aborts the execution.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

13

5 TOUR DE ROBOT WITH IC
The following exercises allow you to interact with your TJ PRO™ robot and learn how to
control the motors and observe the sensory inputs. As you expand your TJ PRO™ with
more sensors and actuators you will be able to do the similar tests with your own
functions and drivers. An understanding of these basic functions will enable you to
implement robot behaviors!

5.1 Motor Control
Implementation choices enable you to control TJ PRO™’s motors using the
twoservo.c library program. You do not have to understand this program, but I
thought you might be interested in what library program drives the motors. The actual
motor control function is

motorp(<motor number>, <percent speed>)

To enable motor operations type (Be sure the wheels of the robot do not touch anything
before typing the next command)

servo_on()

The servos will turn-on and one or both might move slightly. Technically, if they were
exactly calibrated, they would not move at all. We will illustrate calibration later. Beware!
The electronics drift some, so even calibrated servos will still probably rotate slowly after
a period of time. To still the motors so you can think, type

 motorp(0,0)

and then

motorp(1,0)

Both motors should come to a complete stop, even if not calibrated, because the software
disables the motors when it detects zero percent. This provides the programmer with a
reliable stop-motor command.

To move motor zero, type

motorp(0,100)

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

14

Switch Value
Front 46
Front right 24
Rear 129
Front left 68

Which wheel turned and in what direction?4 (Read answer in footnote). You may wish to
stop the motor before you read on. Use the up-arrow key to select the previous motor
command that stopped the motor.

Execute the command

motorp(0,-100)

What does the wheel do now?5

Try different percentages for the motor speed.

Caution: make sure that the percent speed of the motor is always between –100 and 100,
otherwise you will get unpredictable results.

Repeat the above for motor one.

5.2 Bumper Sensor
The TJ PRO™ bump sensors uses a slick trick. Each of the three bumper switch closures
adds more current through a voltage divider circuit. This allows a program to actually
determine where on the bumper TJ PRO™ has made contact with an object. The bumper
voltage is measured by the function analog(0). You will explore the resulting bumper
values next.

Do not touch the bumper. Type

analog(0)

IC should return the integer 0. When you typed the above command, the p-code version of
the analog function was transmitted to the robot and interpreted by the p-code interpreter
or virtual machine.

Press and hold the middle front bumper switch and execute
analog(0) again (Use the up-arrow edit key for fast
action☺). You should get something around 46. This number
may vary somewhat from robot to robot. Execute
analog(0)while pressing and holding each of the four
bumper switches in turn. You should get readings close to the
values on the right.

4 Left wheel in the forward direction. If the right wheel moved instead, reverse the servo connectors on the
microcontroller board. Be sure to remember which connectors and the orientation of the plugs.
5 The motor reverses direction and turns backward.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

15

Now, press and hold down combination of bumper switches and execute analog(0).
For example, hold the front and back switches down and execute analog(0).The value
returned equals about 140. Hold and press the front and front-left bumper switches to get
about 61. A value near 61, therefore, indicates that the bumper struck an object on the
right side between the front and right-front bumper switches.

5.3 Infrared Proximity Sensors
The two IR LED on top of TJ PRO™’s plate emit 40KHz modulated infrared light when
enabled. The MC68HC11 processor uses memory mapped input and outputs, so the
programmer controls all output devices by writing to memory. IC provides a poke
command to enable the programmer to control output devices.

poke(<address>, <byte data>)

The poke command loads the memory byte at <address> with <byte data>. For
the TJ PRO™ the IR emitter can be controlled by storing data at <IR_address> =
0x7000 (the prefix ‘0x’ means that the address is at 7000 base 16 or hexadecimal). Each
bit of location 0x7000 can control a digital output. For the TJ Pro, bits 0, 1 and 2, reading
from right-to-left on the <data byte>, control the two front and the one rear IR
emitters. The command

poke(0x7000,0x07)

turns on all three IR emitters.

Turn on the three emitters. What happens? Well, nothing that you can see. IR light is
invisible to us. To determine if the IR emitters are actually working we will have to read
the IR sensors or detectors. These detectors are in the shiny cans underneath the top plate
and are read by analog(2)and analog(3). At this time, in case you might be
wondering, analog(1) has not been assigned is available for user sensor expansion.

Keep all objects a foot or more away from the front of your robot. Read the sensor
associated with analog(2). The return value should be the minimum value the IR
sensor outputs to the microcontroller, around 85. Hold your hand on the front-left side of
the robot and take an analog(2)reading. Be careful not to obstruct the right side.
Repeat for the front-right side. What were your two readings? Which side gave the larger
response? The value you get will depend upon how close you hold your hand to the robot
sensor. Hold your hand about two inches away from the edge of the robot for each
experiment. As long as you are careful to hold your hand to one side or the other, one
value should equal about 85 and the other about 123. When you do this experiment

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

16

successfully, you will have identified which IR sensor is associated with analog(2), the
side with the larger reading. So, which sensor does analog(2)return?6

If you came to the correct conclusion, you can now predict that analog(3)returns the
value of the left IR sensor. Verify this claim by repeating the above experiments with
analog(3). For accurate turbo typing, use the line editor to simply change 2 to 3 in
your previous command. The ranges of the two sensor, while close, may not be exactly
equal, an important fact to remember when programming behaviors.

We have completed the tour of TJ PRO™’s basic capabilities. You will certainly be
amazed (I was!) when you discover the sophisticated robot behaviors you can program
with just these simple capabilities.

6 SOME POSSIBLE BEHAVIORS
In the previous section you saw how IC library programs provide the basic hardware
interrupt and device driver routines for the robot. These allow the user to access the
sensor readings and drive the motors. With these routines, the user can program an
unlimited number of behaviors. A representative set, but, by no means, an exhaustive set,
of primitive set of behaviors, from which more complex ones can be developed, are listed
in Table 1. Some of these behaviors, like line following, require installation of auxiliary
sensor kits.

Table 1 Possible Primitive Behaviors

Collision avoidance Collision detection Line following Light following
IR light avoidance Pushing Collision detection Shy behavior
Aggressive behavior Exploring behavior Wall following IR beacon tracking
Attraction to motion Floor drawing Fixed motion patterns Dance motions

7 PROGRAMMING BEHAVIOURS
The exercises in this manual will help you write simple TJ PRO™ behavior programs to
become more familiar with the robot and its features while, at the same time, building your
confidence in TJ PRO™ program development. Understanding how to program the
various robot features and simple behaviors will then permit you to piece them together to
create complex behaviors. You will certainly be surprised along the way, especially when
you think you have programmed the robot to do one thing and its actual behavior is quite
different. Many times the robot’s behaviors can only be understood after post-
experimental analysis.

8 ADVICE ON DEVELOPING BEHAVIORS
The following advice is based on several years experience teaching engineering students to
program autonomous robot behaviors.

6 Analog(2) returns the value of the right IR sensor.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

17

8.1 Vulcan Mind Meld
To effectively program a behavior for TJ PRO™, or, quite possibly, any autonomous
robot, and to gain insight into the problems encountered by your robot, you should play
Vulcan to the robot and imagine performing a Vulcan Mind Meld with it. All you Trekkie
fans know what this means. But, to be specific, try to perceive the universe as the robot
does with its limited sense capabilities. This is harder to do then you might think. Imagine
yourself one with the robot. Play out different sensations and responses. Help yourself by
actually recording robot sense data and examine typical responses, or responses to special
environmental conditions of interest in the behavior you are developing. The mind meld
will help prevent the common error of asking the robot to respond to environmental
conditions it cannot detect with its sensors! While this statement is so totally obvious, it is
also a difficult self-discipline to psychologically enforce. Why? Humans typically interact
with each other, or intelligent animals, expecting and perceiving sophisticated behavior
and sensory performance. These expectations seem to subconsciously creep into our
agenda when working with autonomous machines, often with disappointing results!
Autonomous robots have nowhere near the sensory and behavioral capabilities of an
insect, let alone higher animals.

8.2 Relative calibration of sensors of the same type
Manufacturing tolerances, circuit tolerances, and mounting variations make it possible for
two instances of the same type of sensor to respond differently to the same stimulus.
Behaviors, therefore, should not be programmed to depend upon two sensors of the same
type producing identical responses to the same stimulus. Instead, write programs to
calibrate sensors of the same type in some fixed environment. For example, place a
cardboard box in front of, and parallel to, the wheel axis of a TJ PRO™. Measure the
response of the two front IR detectors using analog(2)and analog(3). Note the
differences in the readings. If there are none, that’s great! In general, however, they will
differ somewhat due to electrical noise or manufacturing tolerances.

Another approach for making your robot behave more reliably is to program robot
behaviors that respond to relative sense stimuli, not absolute sense measurements. This
will make the robot behave more organically and robustly to uncertain, dynamic
environments.

8.3 Adjusting to Ambient Conditions
A programmed behavior will often be brittle, i.e., not flexible or adaptive, if that behavior
depends upon specific magnitudes of robot sensor readings. Brittle behaviors fail when the
environment changes from the environment in which the behavior was developed. The
smaller the change that causes the failure, the more brittle that behavior is. For example,
the IR detectors on TJ PRO™ will detect white objects at larger distances than dark
objects. Suppose a collision avoidance algorithm sets a threshold value of the IR as an
indication of an impending collision. If this threshold is determined experimentally with
light colored obstacles, then dark colored obstacles will not be detected and the robot will

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

18

bump into them. On the other hand, if the threshold is set for dark colored obstacles, the
robot will end up spinning in circles in a light colored environment because it detects
threats everywhere. The solution is not to pick an average color threshold, but rather,
program the robot to adjust its threshold downward if it has not detected a collision for
some specified time, or, to adjust the threshold upward if it is colliding too frequently. The
difficulty, of course, is determining exactly what the “specified time” between collision
should be or what “colliding too frequently” means! The easy, but difficult to implement,
answer is to let the robot learn these parameters based upon some performance criteria.

Robot behaviors and sensors, therefore, should adjust to ambient conditions. Biological
organisms perform this function fantastically well. The human eye adjusts to bright
sunlight or a darkened cathedral with dimly lit candles. This procedure is easier to state
then execute, but serves as a general principle.

8.4 Create simple behaviors
The beginning robot practitioner usually formulates behaviors too complicated to
implement directly. With experience, the virtue of simple, direct behaviors becomes
apparent. Complex behaviors should be broken down into sequences of simple, primitive
behaviors. If this can be done, the chances of successful implementation are high. If not,
there is little value in trying to implement such behaviors directly.

8.5 Build on simple behaviors
As the user accumulates a repertoire of primitive behaviors, complex behaviors open up.
Perhaps the easiest way to generate complex behaviors is simply to sequence a collection
of primitive behaviors. For example, wall following might be decomposed as follows: 1)
detect a “large” object, 2) approach the object until “near”, 3) turn until the robot front-
to-rear axis aligns “parallel” with the “surface” of the obstacle, 4) move “parallel” to the
obstacle surface. At each instant of time a particular behavior in the sequence is invoked
based on the current state of the robot and its sensory inputs. Of course, the programmer
will have to establish to the robot’s perception the meaning of such terms as “large”,
“near”, “surface”, and “parallel”. Remember to Vulcan Mind Meld!

8.6 Integrating Behaviors
More complex behaviors may require the combination of primitive behaviors in a way not
well understood. Artificial neural network activation, opinion guided reaction, non-linear
dynamics, and fuzzy logic all offer techniques for integrating behaviors. Each technique
offers specific advantages and specific difficulties. Discussion of such issues is beyond the
scope of this manual. The reader’s attention is brought to this matter to encourage
investigation into these possibilities.

9 RECOMMENDED STRUCTURE FOR YOUR C CODE
Figure 1 and Figure 2 illustrate suggest a coding format standard for C programs.
Elements that go in the Includes, Constants, and Prototypes blocks can be grouped

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

19

according to function, and alphabetical within the group. For IC, the Includes libraries are
loaded from the terminal and not placed in the program as with a compiled version of C.
We comment the Includes block with the relevant library functions used by the program.
Variables that are defined in the Globals block should be arranged by context (All sensor
variables together, all motor variables together, etc.). Obscure names should be avoided.
A small description should accompany each function prototype:

/* magnitude(x,y) returns the magnitude of vector [x,y] */
 int magnitude(int x, int y);

/* init_SCI() initializes the serial communications port */
 void init_SCI(void);

Comments on the other items (Globals, Constants, #defines and #includes) will increase
readability. Here are some recommended guidelines for coding in general. These
guidelines are not laws of nature and esthetic tastes will vary among individuals. So do not
force them over reasonable alternatives (some programmers object to * boxes because
they waste so much time to generate). The underlying philosophy behind these guidelines
is to make your code easier to read, debug and understand, not to make life painful.

1. Indent each new syntactic level at least 2 spaces. This can be called the neatness rule.
Example:
 while (i > 0)
 {
 printf("I've been assimilated\n");
 if (x == 1)
 i--;
 else
 i++;
 x = i + 10;
 }

2. When possible, comment on what a block of code will do, instead of describing the
purpose of each line in a block. Some exceptions to this are when writing assembly
programs or when writing "tricky" code that would otherwise be unreadable. Single
line comments can make reading easier, but do not go overboard. When in doubt the
general rule is: “ Does this comment make the program easier to understand?”

3. Put the main program before all the function definitions. There is great esthetic dispute
on this, so if you want to put main() last, feel free!

4. Describe all functions clearly.

In the main body of your program, namely, in main(), you will typically need some
initialization functions, particularly,

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

20

Figure 1 A template standard for lexical structuring of your TJ PRO™ C-Code. The correctness of your
code does not depend upon adhering to this standard. Rather, it makes it easier for you and other people to
be able to read and understand the code.

MEKATRONIX CODING STANDARD

/**
 * MEKATRONIX Copyright 1998 *
 * Title *
 * Programmer *
 * Date *
 * Version *
 * *
 * Description *
 * Version History: *
 * *
 **/

/*************************** Includes *********************************
#include <tjbase.h> /* All TJ code requires this #include */
/************************ End of Includes *****************************/

/*************************** Constants ********************************/
#define FULL_SPEED 100

/************************ End of Constants ****************************/

/*************************** Prototypes *******************************/

/************************ End of Prototypes ***************************/

/**************************** Globals *********************************/

/************************* End of Globals *****************************/

main()
/***************************** Main ***********************************/
{

}
/************************** End of Main *******************************/

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

21

Figure 2. A C-function written according to this standard makes the code more readable and

maintainable. In the description block outlined by the asterisks, the possible input and output parameter
sources are listed. Most functions use only a small subset. Those not used can be deleted, but some
programmers prefer to keep them there with a None specifier (I must confess that I am not consistent).
Many programmers find the asterisks boxes a nuisance, so feel free to drop them!

servo_on(); /* Enables motor control. */
init_serial(); /* Provides primitive serial communication. */

Many programming problems arise whenever one of these initialization functions has not
been executed at the beginning of main().

10 TJ PRO™ EXPERIMENTS
The numbered items below suggest a sequence of ever more complex programs and
experiments you can perform to familiarize yourself with TJ PRO™’s capabilities. These
experiments will open up to you the rich variety of behaviors you can program. After each
successful experiment, save your program and do not change it. Use copies of it to begin
other programs, but do not write over and destroy your only copy of a successful
program. You will never know when you might want to use it again, either as is, or as a
basis for another program.

Program solutions to the following experiments are on the education diskette proiced01.
Since a computer language provides a rich structure for developing procedural solutions
to problems, you should realize that the Solutions given here represent only one of large
number of possible ways of solving the problems stated. Also, ambiguity of language will

function()
/**
 * Function description: *
 * Returns: *
 * *
 * Inputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Outputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Functions called: None *
 * Notes: None *
 **/
{

}
/***********************End function ****************************/

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

22

lead to different interpretations of what the problem states and, thus, give rise to other
solutions. In fact, one of the great difficulties in the discipline of computer programming is
to translate an imprecise natural language specification of a problem into a precise
computer language specification and then determine if the program does what you
specified. In fact, once the program performs to the end-user’s satisfaction, the program
becomes the precise statement of the solution and defines what problem it solves. Often,
the resulting program solution does not exactly match the original, ambiguous
specification, but provides what the end-user finds acceptable!

10.1 Robot Connections During Program Development
Do not forget the recommended operating procedure for robot program development.

1) Keep the robot on its charger during program development. In this way the robot will
almost always have fresh batteries to perform floor experiments when you reach that
point in your design.

2) Maintain serial connection between the robot and your PC.
3) For convenience, keep the TJ PRO™ mounted on a stand with the wheels suspended

in the air. This way you can perform most experiments and tests during early program
development without placing the robot on the floor, which requires connecting and
disconnecting the serial cable and the battery charger each time.

10.2 Motor Experiments
These experiments acquaint you with the motor functions and how to get TJ PRO™ to
move the way you want it to move.

10.2.1 Calibrating the Servos
To calibrate the servos requires finding the modulating pulse width that stops the wheels
from turning. Because of some instabilities in the control electronics designed by the servo
vendors, you will find it difficult to exactly pulse the motors so precisely that they do not
move. The pulse width for zero motion of the wheels is nominally 3000 processor cycles,
about 1.5 milliseconds. The persistent IC variables that controls the servo pulse widths
servo_pulse_wavetime1 and servo_pulse_wavetime2 are Left_Zero
and Right_Zero,

servo_pulse_wavetime1=Left_Zero;
servo_pulse_wavetime2=Right_Zero;

The servo calibration utility routine, calsvtjp.c in the directory
TJPRO_Utilities, defines four functions

void Rs(int delta) {Right_Zero += delta;}
void Ls(int delta) {Left_Zero += delta;}
void Ras(int num) {Right_Zero = num;}
void Las(int num) {Left_Zero = num;}

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

23

which allow you to change the values of Left_Zero and Right_Zero incrementally
or absolutely. Good experimental values that I found for almost stopping both servos on
my TJ PRO robot where Right_Zero = Left_Zero = 3072 .

Servo Calibrate Procedure
1) Download calsvtjp.c
2) Press reset,
3) Type the IC command Ras(3072),
4) Type the IC command Las(3072).

Did both motors stop or at least move very slowly, say, less than ½ revolution per
minute? Use Rs() and Ls() to incrementally change the settings and observe how the
wheel rotate. Of course, without the above data, you can start at the initial settings and
explore on your own how to find the right values that zero the servos.

Once you have good values zero values for both servos, open motorp() in the Libtjp
directory and change the two #defines,

#define Right_Zero 3000
#define Left_Zero 3000

to the calibrated values you experimentally determined.

Caution: Even calibrated servos drift and so try to program behaviors that do not require
precision motor control.

10.2.2 Motor Angular Speed Characteristics
In this section, you will measure the wheel motor angular speed, the number of wheel
revolutions/second, at various speed settings.

Angular Speed Experiment 1
1) Put a narrow strip of tape on the wheel to make it easy for you to identify a complete

rotation.
2) Execute motorp(0,100) from the IC command line.
3) Measure the speed of the turning wheel. Use a stopwatch and measure how long it

takes the wheel to turn 10 times.
4) Compute the angular rotation rate of the wheel in revolutions/second.
5) Change the speed of the motor to 75%, 50%, 25%, 15%, 10%, 5%, successively, and

measure the angular rotation at each speed.
6) Plot angular rotation of the wheel vs. the speed.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

24

What conclusions can you draw from the curve?7

Angular Speed Experiment 2
Do the previous experiment using motorp(1,?).
Do the left and right motors have the same response to percentage specifications?
What does this tell you about precise control of the robot motion?8

Angular Speed Experiment 3
Repeat Angular Speed Experiment 1 using negative percentages.
Compare the graphed results of this experiment with the graph plotted in Angular
Speed Experiment 2. Do the graphs appear to be close?

Angular Speed Experiment 4
Repeat Angular Speed Experiment 2 using negative percentages.
Compare the graphed results of this experiment with the graph plotted in Angular
Speed Experiment 1. Do the graphs appear to be close?

The idea behind the last two experiments is to illustrate that the motors probably perform
about the same when turning in the same relative direction, but have significant differences
in performance when their relative angular velocities are oppositely directed.
Consequently, rotations using a negative speed percentage on one wheel and a positive
speed percentage on the other will, in general, be more precise than motion resulting from
same-sign speed percentages on both wheels.

Angular Speed Exercise
1) Measure the diameter of each wheel. Are they the same? How much error do you

estimate in your measurement?
2) From the measurement of the right wheel diameter convert one of the two graphs

generated for the right motor angular speed to linear speed of the wheel contact on the
floor versus the various percentages. Recall that the wheel contact linear velocity
magnitude equals the radius of the wheel times the angular velocity.

10.2.3 Writing an IC Program
In this section you will write a simple program and then learn to use persistent variables
for changing parameters in your program from the IC command line.

7 One Possible Conclusion: The curve is non-linear, meaning that a % change in the motor software
speed parameter does not give you the same % change in speed of the actual motor.

8 The two motors appear to have quite different responses. This asymmetry may result from the
mechanical structure of the brush mechanism, which performs differently when the servo motor rotates in
one direction versus the other direction. Each motor is actually turning in a direction opposite to the
other when the robot goes forward or backward , hence, the different motion characteristics for the same
speed % . You need to keep this in mind when programming motion control.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

25

Program Objective
Code a simple program to turn on both of TJ PRO™’s motors for 10 seconds.

Specification
Turn on both motors 100 percent in the forward direction for 10 seconds and stop.

A Solution
The program xm1atjp.c in
Figure 3 does the job.

The servo_on function actually sets up an interrupt service routine that periodically
executes and controls the motors using pulse-width-modulation (PWM). As long as the
processor is powered, this interrupt service routine will drive the motors at the last speed
specified by motorp, even after the instruction has completed execution.

Since I can never remember the index numbers for the right and left motors, I use
#define to name such constants:

#define LEFT_MOTOR 0
#define RIGHT_MOTOR 1
#define MAXSPEED 100
#define ZEROSPEED 0

These #defines changes the meaningless index numbers into useful information. As a
general rule constants should be defined to give them context. The number 0 means the
left motor in the context of motorp(0, 100) , but in other contexts it may mean
something totally different. For instance, in motorp(LEFT_MOTOR, ZEROSPEED)
both arguments have the numerical value of zero, but the zeros mean totally different
things. The #define allows you to differentiate contexts simply by naming the constants.
A given constant can be assigned many names to allow differentiation in usage.

Most of the text in the program is documentation and has nothing to do with the
executable functions and statements. This is typical. If you save the standard program
documentation structure in a file, you can save time by inserting that structure each time
you develop a new program. Of course, if you are modifying a program, most of the
structure will be in place, provide, of course, you used the structure in the first place!

Experiment with xm1atjp.c
Download the program xm1atjp.c in
Figure 3 into your TJ PRO™ using the IC Download File menu selection. Execute this
program by pressing the reset button on the robot. Remember, robot wheels not
touching, otherwise you will have to move fast!

Verify the motors turn for 10 seconds. You can use the Windows95 console clock to
measure seconds or you can estimate by counting.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

26

Figure 3 This program turns the both motors on 100 percent for 10 seconds and then stops them.

/**
 * Title xm1atjp.c *
 * Programmer Keith L. Doty *
 * Date August 21, 1998 *
 * Version 1 *
 * *
 * Description *
 * Spin both wheel 100% in the forward direction for 10 seconds. *
 * *
 ***/

/**************************** Includes **********************************/

/*
 Before loading this program, be sure you load the library files

twoservo.icb
twoservo.c
motorp.c

*/

/************************ End of includes *******************************/

/*************************** Constants ********************************/

#define LEFT_MOTOR 0
#define RIGHT_MOTOR 1
#define MAXSPEED 100
#define ZEROSPEED 0

/************************ End of Constants ****************************/

void main()
/****************************** Main ***********************************/
{
 float sleeptime;

/*Initialization */
 servo_on();
 sleeptime=10.0;

/* Start the motors */
 motorp(RIGHT_MOTOR, MAXSPEED);
 motorp(LEFT_MOTOR, MAXSPEED);

 sleep(sleeptime);

/* Stop the motors after sleeptime seconds */
 motorp(RIGHT_MOTOR, ZEROSPEED);
 motorp(LEFT_MOTOR, ZEROSPEED);

}

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

27

This program is rather boring! You cannot even change the sleeptime variable. Try to
change it from the IC command line with sleeptime = 1.0. IC will tell you

IC> sleeptime = 1.0
Undeclared symbol sleeptime

The problem here is that the variable sleeptime declared in the function main() is
local to main(). That is to say that sleeptime no longer exists, or persists, after
execution of main(). You cannot run this program with different values of
sleeptime without rewriting the statement that initializes that variable. There is a way
out. IC provides global and persistent global variables, which permit you to input, from
the IC console, different values of a program variable prior to execution.

 To make a variable global it has to be defined outside of any function. This means any
function has access to the variable. Declaring such variables persistent makes them
available with their values, even after a reset or termination of the program. You can read
persistent variables during a session as well as change them. Other global variables will
initialize on reset.

The program in Figure 4 differs from the program in Figure 3 only in the definition of
sleeptime as a persistent global variable.

Experiment with xm1btjp.c
Download the program xm1btjp.c from the directory TJPRO_EXPERIMENTS
into your TJ PRO™ using the IC Download File menu selection. Execute this program
by pressing the reset button on the robot, or by typing main() in the IC command
line. The typing of main() as an alternative method of starting a program may be
useful. I prefer pressing the reset button, normally, but when loading and downloading
files remotely using radio or IR communications, the typing alternative is quite handy!

The program does not do any thing. Why? The variable sleeptime was not assigned a
value by the program, so IC automatically assigns the value 0 to it. Type sleeptime
into the IC command line to see its current value. It should be zero. A zero wait time
between starting and stopping the motors gives no time for the motors to move before
being stopped.

Execute sleeptime=3.0 and press reset on the robot. What happens now? You should
see the wheels move forward for 3 seconds. Any number of resets from now on will give
the same response, since the value of sleeptime persists. Make sleeptime=10.0
while the program is executing. Although the variable changes to 10, the program only
uses sleeptime once, so it has no effect on this particular execution of the program.
However, when you start the program again, it will run for 10 seconds.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

28

Figure 4. Adding a persistent variable to the program in Figure 3.

/**
 * Title xm1btjp.c *
 * Programmer Keith L. Doty *
 * Date August 21, 1998 *
 * Version 1 *
 * *
 * Description *
 * Spin both wheel 100% in the forward direction for sleeptime *
 * seconds. *
 ***/
 /**************************** Includes **********************************/
/*
 Before loading this program, be sure you load the library files

twoservo.icb
twoservo.c
motorp.c

*/
/************************ End of includes *******************************/

/*************************** Constants ********************************/
#define LEFT_MOTOR 0
#define RIGHT_MOTOR 1
#define MAXSPEED 100
#define ZEROSPEED 0
/************************ End of Constants ****************************/

/**************************** Globals *********************************/
 persistent float sleeptime;
/************************* End of Globals *****************************/

void main()
/****************************** Main ***********************************/
{
/*Initialization */
 servo_on();

/* Start the motors */
 motorp(RIGHT_MOTOR, MAXSPEED);
 motorp(LEFT_MOTOR, MAXSPEED);

/* Note: sleeptime initialized zero automatically. Use IC command
 line to change the values of this persistent global variable and
 then execute this program with the new value of sleeptime by
 pressing the reset button on the robot.
*/
 sleep(sleeptime);

/* Stop the motors after sleeptime seconds */
 motorp(RIGHT_MOTOR, ZEROSPEED);
 motorp(LEFT_MOTOR, ZEROSPEED);
}

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

29

You can also generate dynamic effects with persistent global variables. For example, if you
place the statement

while(sleeptime <2.5);

before the statement

 servo_on();

the revised program (xm1ctjp.c in TJPRO_Experiments directory) will idle on
the while statement until you change sleeptime to a number larger than 2.5 seconds
using the IC command line. This capability provides some serious external program
control that you might find useful in complex applications.

Exercise using Persistent Variables
Write a program that controls both motors. Define speedl and speedr as
persistent integer global variables that control the left and right motor speeds,
respectively. Bracket the two motor control statements in main()with an endless
while statement:
…
servo_on();

 while(1)
 {
 program statements
 }
…

The while statement forces endless execution of the program. As the program executes
change speedl and speedr to different values and observe the wheel speed
changing as a result of your console commands.

 A solution to this exercise is xm1dtjp.c in TJPRO_Experiments directory.

10.2.4 Robot Translation
The motion of a rigid body breaks down into two essential motions, translation and
rotation. Translation means the body moves in a direction without changing its orientation.
Translation does not necessarily mean that the body moves in a straight line. However,
since TJ PRO™ must change its orientation to change its direction, TJ PRO™ can only
translate in a straight line (well, “straight line” exaggerates reality a tad!). In this section
you examine how to control the motors to translate TJ PRO.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

30

Programming A General Motion Control Program
Objective

Measure the robot’s deviation from straight-line motion when it is supposed to be
going straight.

Specification
Turn on both motors at 100% forward for 10 seconds and stop the robot. Use the
back bumper switch to start the motion.

 A Solution
You can generate a simple solution by modifying xm1atjp.c to start executing
only after the rear bumper is pressed.

A solution to this exercise is xm1etjp.c in TJPRO_Experiments directory.

For a more general solution, modify the above program by making sleeptime,
speedr and speedl persistent global variables so you can perform a variety of
experiments. Also, put the relevant code in an endless while loop so you do not
have to press reset between experiments, only the rear bumper.

A solution to this exercise is xm1ftjp.c in TJPRO_Experiments directory.

Perform this experiment in a wide-open space at least 4 feet wide and 12 feet long.
Disconnect the robot and place on the floor. Press reset to start the program and tap the
rear bumper to close the bumper switch and start the robot moving. The robot will move
forward for 10 seconds.

Questions
a. After 10 seconds, how many inches has the robot moved forward along its initial

direction?
b. How many inches has the robot veered to the left or right from the line of its

initial direction?

To enable answering these two questions, you can perform the experiment on a tile floor.
Line up the left wheel on a long, straight tile-line and determine how far the wheel has
deviated from the axis of that tile-line after the robot stops.

With xm1ftjp.c in TJPRO_Experiments directory you can easily perform a wide
variety robot motion experiments.

Experiment 1 with xm1ftjp.c
 Objective

Move the robot in forward and determine if it goes straight.
Specification

Turn on both motors in the forward direction at the same percentage.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

31

 Persistent Control Variables
speedl Speed of left motor in ±%
speedr Speed of right motor in ±%
sleeptime Duration of the motion in seconds

Download xm1ftjp.c into your TJ PRO. Input speedl=100 and speedr=100 for
the left and right motors speeds, respectively. Set sleeptime = 10.0 seconds.
Unplug the serial and charger cables, carefully place TJ PRO™ on the floor, press reset to
start the program and tap the rear bumper switch gently to start the robot moving.

Questions
a. Does the robot go straight? Which way does it prefer to turn, to the left or to the

right?
b. Does this make sense with respect to you previous motor graphs? Explain.

Experiment 2 with xm1ftjp.c
Objective

Move the robot in reverse and determine if it goes straight backward.
Specification

Turn on both motors in the reverse direction at the same percentage.

If you are continuing from the previous experiment, you can
1) wait for the experiment to stop, or catch the robot and turn off the power switch),
2) bring the robot to its desk stand,
3) connect the serial cable (and the charger, if you think you will take more than a

few minutes),
4) (power up the robot, if you had turned it off in step 1!)
5) enter the reverse speeds, -100 and –100 for both motors on the IC command line

and, then,
6) execute the code.

Otherwise, download xm1ftjp.c into your TJ PRO, set sleeptime =10.0 and the
motor speeds to –100 and –100 percent and execute the program by pressing the reset
button. Place robot on the floor again and tap the back bumper to set the robot in motion.

Questions
a. Does the robot go straight backwards? Which way does it prefer to turn, to the

left or to the right?
b. Which motor, left or right, appears to be turning faster for the 100% reverse

command? Are your results consistent with the previous experiments? Explain.

Further Experiments:
1. Try to compensate for the robot veering from forward straight-line motion by slowing

down the faster motor (use program xm1ftjp.c in TJPRO_Experiments
directory).

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

32

2. Always keep the slow motor at 100%. You could use a systematic, binary search to
find the best percentage for the fast motor. First, try 50% for the fast motor. If 50%
slows the fast motor too much and the robot veers in the direction of the fast motor,
try 75%, half way between 50 % and 100%. If 50% does not slow the fast motor
enough, i.e., the robot continues to veer in the direction of the slow motor, then try
25%, half way between 0% and 50% (this is not likely!). Continue dividing the
resulting range in half for each experiment, increasing your estimate for the fast motor
if the robot veers in the direction of the fast motor and decreasing your estimate for
the fast motor if the robot veers in the direction of the slow motor. Repeat this process
until you cannot divide the percentage range further. This binary search process will
require, at most, 7 experiments (Why?) before you obtain the best open-loop straight-
line motion possible. Open-loop means no feedback (no sensory measurement) is used
to provide control information that would help the robot compensate for error in its
motion.

Your program should drive the slow motor at 100% forward and the fast motor at X%
for 10 seconds and stop the robot. X% will be assigned a specific value by you for
each experiment. A good initial guess at X% will save you time by reducing the
number of searches.

Questions
a. What percentage did you get for the fast motor that yielded the best straight-line

motion?
b. Does the robot still veer? If so, which way, towards the fast motor or the slow

motor? Does the robot veer consistently to the same side over a set of 5 to 10
experiments? Explain your results and discuss any puzzling features you
discovered.

Experiment 3 with xm1ftjp.c
Repeat Experiment 2 with xm1ftjp.c except, now, move the robot in reverse.

Questions
a. Compare the results moving the robot backward in a straight line to moving the

robot forward in a straight line. Did you find your results puzzling (Hint: I did)?
b. Can you provide an explanation for what you observed, an explanation that can

be tested? (This question does not have an easy answer. I would like to hear from
anyone who has a verifiable hypothesis for the observed behavior and has tested
and verified that hypothesis. Email your explanations to doty@mekatronix.com.)

Translate and Back Motion
Write a new program starting from xm1ftjp.c. The new program makes the robot go
forward for n seconds, stops the robot for a full second, and then reverse for n seconds,
after the back bumper switch is pressed. Download, execute and test.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

33

Questions
a. Does the robot return exactly to the same spot it left?
b. Repeat the experiment 5-10 times and measure the x and y position errors from a

fixed reference point.

A solution to this exercise is xm1gtjp.c in TJPRO_Experiments directory.

10.2.5 Robot Spin
In this set of experiments you observe and measure the characteristics of robot spin, the
second type of rigid body motion.

Spin Experiments with xm1ftjp.c
1. Make the robot spin clockwise about the right wheel at maximum angular speed.

Make sleeptime a large number in order to give yourself time to watch the robot
behavior.

a. Does the right wheel stay in one place or does it drift away from its initial spot?
b. Measure the angular rotation rate in revolutions/second. Suggestion: pick a

feature on the TJ PRO™’s top plate and use a stopwatch to measure how long it
takes that feature to rotate 10 times.

c. Measure the drift displacement. (Hint: Mark a water erasable footprint of a wheel
on a tile floor. Place the wheel on the footprint. Enter a sleeptime equal the
approximate time for the robot to make 10 turns. Run the robot for that time and
mark a new footprint. Measure the direction and distance from a point on the first
footprint to the corresponding point of the second.)

d. If you double or triple the time for spinning, does the displacement distance
double or triple?

2. Make the robot spin counterclockwise about the right wheel at maximum angular
speed.
Apply the questions in the previous experiment to this experiment.

3. Make the robot spin clockwise about the left wheel at maximum angular speed.
Apply the questions in the first experiment to this experiment.

4. Make the robot spin counterclockwise about the left wheel at maximum angular speed.
Apply the questions in the first experiment to this experiment.

5. Make the robot spin clockwise at maximum angular speed about its center axis by
setting the left and right motor speed equal in magnitude, but opposite in sign.
Apply the questions in the first experiment to this experiment.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

34

6. Make the robot spin counterclockwise at maximum angular speed about its center axis
by setting the left and right motor speed equal in magnitude, but opposite in sign.
Apply the questions in the first experiment to this experiment.

Data Analysis
a. Compare the drift displacements for Experiments 3 and 4.
b. Compare the drift displacements for Experiments 5 and 6.
c. Compare the angular rotation rates of Experiments 3 and 4.
d. Compare the angular rotation rates of Experiments 5 and 6.
e. If ri is the angular rotation rate in Experiment-i, then compute the ratios r1/r5, r2/r6,

r3/r5, r4/r6. Do you see a relationship between the angular rates? Explain or justify
your claims.

10.3 Bumper Experiments
To this point you have investigated the actuation capabilities of the TJ PRO™ robot and
you have seen how to access sensory information. In this section, and the next, you will
explore the interaction between TJ PRO™’s perceptual and motor capabilities to realize
robot behaviors.

 TJ PRO™’s bumpers provide the robot with a sense of touch. TJ PRO™ can differentiate
a bump contact at six different points: at each of the four bumper switches, between the
front-middle and front-right, and between the front-middle and front-left switches. Three
bumper switches in front and one in back make TJ PRO™ more sensitive to frontal
contact than back contact. The design presumption is that TJ PRO™ mostly moves
forward and needs to be more touch-capable in the forward direction.

Caution!
In the bump experiments TJ PRO™ will bump into objects in order to respond to them,
so take care that TJ PRO™ does not bump into anything that will harm TJ PRO™ or the
object. The small size of TJ PRO™ does not usually invoke cause of concern, but the
world is complex and a word of caution will remind you to evaluate TJ PRO™’s
environmental situation before setting it free.

Program Bump_Around Behavior
TJ PRO™ moves forward until it bumps into something, at which point it backs up for T
seconds, turns a random angle and goes forward again. If, while backing up, the back
bumper switch contacts an object, TJ PRO™ will go forward T/2.0 seconds, turn a
random angle and continue forward once again. Use the back bumper to start the program
after each reset for ease of handling. (For one “ease”, back bumper switch control lets you
stop the critter on the run by pushing the red reset button!)

Assignment
 Design a TJ PRO™ IC program to implement the Bump_Around behavior.

Specifications

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

35

Variables:
persistent float T=0.350 Times the motions
float marktime Saves current value of seconds()

Motor speeds:
Forward: 100% both motors
Backward: –100% both motors
Turn Right: 100% left motor, -100% right motor
Turn Left: 100% right motor, -100% left motor

Functions:
float seconds(void) System function used to time actions.
void turn(void)

A user defined function that turns the robot a “random” angle. IC
does not support random(), so what I did is use the last digit of

rand = (int)mseconds();
to select a “random” direction of spin
 if (rand & 0x0001) spin left else spin right
then, after setting the appropriate motor speeds, I computed the
“random” duration of the spin in milliseconds with the code
sequence

rand = (rand & 0x00ff)<<2 ;
 msleep((long)rand);

Bumper Values:
Assume a back bumper hit if BUMPER (= analog(0))>120. Ignore
the fact that if both a back and any front bumper switch is pressed
simultaneously BUMPER > 120. Similarly, assume that

if((BUMPER>10)&&(BUMPER<110))
one or more of the front bumpers have been switched on.

 Important! Note the requirement that BUMPER>10. Ten is a “fuzzy
zero” to protect against bumper noise inadvertently triggering a false
detect. In theory, BUMPER>0 should work, and it might sometimes, but it
is not reliable. I have detected noise as high as 8 on the bumpers.

A solution to this exercise is xbmp1tjp.c in TJPRO_Experiments directory.

Turning_Away Behavior Based on Bumper Contact
Program TJ PRO™ to turn away from a bumper contact as described in the table below.
As with the Bump_Around behavior, define persistent float T=0.35 as the
backup time and T/2.0 as the forward time on a back bumper switch closure. You can
change the value of T experimentally to see what other values do. I find T=0.35 gives
good performance, but you may find another value that suits your purposes better.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

36

Switch Closure(s) Range Action
Front-Middle 40-50 Back up 350 ms1. Turn right 500 ms.
Front-Right 20-30 Back up 350 ms. Turn left 250 ms.
Front-Left 67-70 Back up 350 ms. Turn right 250 ms.
Front-Middle:Front-Right 60-63 Back up 350 ms. Turn left 125 ms.
Front-Middle:Front-Left 90-100 Back up 350 ms. Turn right 125 ms.
Back 120-135 Forward 175 ms. Turn left 500 ms.

1ms = milliseconds = 0.001 seconds
You will need the IC millisecond timer function called msleep(<Long_integer>)
to time out the turns. Redefine the turn() function,

void turn(int bump)

where bump is the current reading of the bumper switches, analog(0), and
turn(bump)computes both the direction and duration of the turn based on the value of
bump and then executes the turn for that direction and duration.

A solution to this exercise is xbmp1tjp.c in TJPRO_Experiments directory.

Questions
Qualitatively compare this fixed turning away behavior with the previous one with
“random” motion. Which motion appears more sophisticated? More organic, animal
like? Which program has fewer lines of code? Which behavior appeals more to your
sense of esthetics, or which motion gives you more satisfaction? Which behavior
appeared more interesting to you?

(There is no one “right” answer to each of the above questions, but can you defend your
answers with reasoned arguments?)

Application of Sensors in Multiple Behavioral Contexts
One of the neat aspects of an autonomous robotic agent is the multiplicity of uses to which
we can put its sensory and actuation capabilities. We have already demonstrated this with
the bumper switches. The rear bumper switch, for example, has been used not only to
detect rear collisions, but also to serve as a “GO” switch. It gets even better. The bump-
programs use the back bumper switch both ways, depending on context. After the robot is
told to “GO” by pressing the back bumper, the switch resumes its role as a collision
detection sensor. The contextual meaning of a sensory input looms as an important
concept in autonomous robotics. As you develop your own programs you can take
advantage of this powerful idea and use the sensor suite in multiple ways.

10.4 Terminal Output without IC
You have already seen examples of how persistent variables can be used as program
inputs, even dynamically, but, so far, none of the TJ PRO™ programs have output data to

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

37

a terminal. Unfortunately, IC is designed to output data to an LCD screen on the robot
using a rather obscure feature of the MC68HC11, a rather inconvenient situation for TJ
PRO™ which has no LCD screen! This aside will show you how TJ PRO™ can output to
a VT100 screen simulated by the Windows95 Accessory program Hyper Terminal. The
sacrifice is that IC must be exited, Hyper Terminal opened and configured as follows:

Configure Hyperterm on Win95:
Direct to COM1, 9600 baud, 8 bits, no parity, 1 stop bit, no flow control.

Since IC must be closed to do PC screen output, you will not have access to persistent
variables to input data. Apparently, the virtual p-code machine continues to look for input
from IC, so your screen input, if not synchronized with the virtual machine, will not
typically be accepted (sometimes you can fortuitously get a character inputted).

The process to write TJ PRO™ programs that write to your PC screen is described next.

 TJ PRO™ PROGRAMS THAT WRITE TO YOUR PC SCREEN
1) Load serialtjp.c from TJPRO_Libsrc directory,
2) Load the TJ PRO™ program that uses the serial output routines in serialtjp.c,

Make sure your program uses the back bumper switch to start it. This lets you reload
IC with ease. Pressing the robot reset without touching the enabling back bumper
switch will kill the serial output from your program. If this technique is not used, the
serial output of your program will conflict with IC communication and prevent
synchronization when you attempt to open IC again (You close IC in the next step).
You will then have to go through the inconvenience of doing a first time load of IC
again.

3) Close IC,
4) Open Hyper Terminal configured as described above,
5) Connect Hyper Terminal to COM1 (select the phone on-the-hook icon),
6) Press reset to begin program execution,
7) Press the back bumper to proceed with program execution (the test for the back

bumper should be the very first statement in your program),
8) Behold! Your program should write to the screen.

Example TJ PRO™ Screen Output Progarm
1) Read the program sensortjp.c in the TJPRO_Experiments directory. Try to

understand how it does what it does. This program outputs the bump and both IR
sensors to the PC screen on a continuous basis. The program explains and uses VT100
character escape sequences to clear the screen and move the cursor to different lines
and columns. To erase the data fields, the code prints blanks and then backspaces over
them before the next data sample is printed (A printf() for an external terminal
would obviate the need for this hack!).

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

38

2) Apply the above procedure to sensortjp.c and watch the data update on the
screen as you put your hand in front of the IR sensors or push any combination of
bumper switches.

10.5 Infrared Experiments
The IR emitters, the blue eyes on top of the plate, emit 940 nanometer electromagnetic
radiation (infrared) modulated at 40KHz. This light expands out in cone, strikes an object.
Some of the light is reflected back. Underneath the plate, on the right and left, the IR
detectors receive the reflected light and output a voltage proportional to the received
intensity. We will use this sensory capability in the following experiments.

For the IR experiments, use the program sensortjp.c in TJPRO_Experiments
directory on the tjproed01 diskette.

Experiments
Follow the procedure outlined in TJ PRO™ PROGRAMS THAT WRITE TO YOUR
PC SCREEN

1. Explore TJ PRO™’s Sensory Capabilities.
Observe the sensor outputs printed on your terminal screen.

Place an object or your hand to the right front of the robot. Observe the change in the IR
sensor readings. If the object is close enough, you will have certainly changed the right
front IR detector reading. Depending on your placement of the object, you may or may
not change the left front IR detector reading. Repeat with the object at various distances.

Press the back bumper and various combinations of the switches behind the front bumper.
Explore the robot’s “visual” limits. Try objects of various sizes and placements. These
visual limits will help you understand why TJ PRO™ fails to detect objects sometimes and
bumps into them.

a. Determine the minimum and maximum readings of the two IR detectors. Are they
the same? What impact would any differences have on collision avoidance?

b. Can TJ PRO™ see the point of a small shoe on the floor in front of it? Can it see
an object suspended several inches above its plate?

c. Determine the minimum height of a white wall that the robot can see.
d. Determine how low an overhang can be without the robot seeing it.
e. What is the smallest rectangular wall surface the robot can see?
f. What is the smallest right circular cylinder (chair leg!) the robot can see?
g. Explain why TJ PRO™ IR “vision” these and other “blind” spots.

2. In this experiment you will measure IR detector intensity as a function of the distance
from a reflecting wall surface.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

39

 Procedure
Place a flat, white cardboard, paper, or plastic “wall” in front of the right IR detector.
I recommend taping a white sheet of paper on the side of a cardboard box. Make the
front surface of the right IR detector package parallel to your “wall” (the right IR
detector can is the shiny metal cube underneath the top plate on the right-hand-side).
A key to the success of this experiment is to keep this parallel alignment as you move
the wall various distances from the robot. For example, you can slide the cardboard
box along straight tile-lines on a tile floor.

 Questions
a. How can you tell the robot IR detector squares off against the wall? (Hint: Place

TJ PRO™’s front about 8 inches from the wall and take an IR reading using IC.
In place, manually rotate TJ PRO™ a small amount and take another reading. Be
careful not to move the robot closer or further away from the wall! If the IR
reading got bigger, rotate a bit more and take another reading. If it got smaller
rotate back the other way and take another reading. Keep rotating in the direction
that causes increases in the IR readings. The IR readings will then level off and
not change for small rotations. Eventually the readings start to decrease to one
side and then the other of the flat high region you found. Pick the middle of that
region. That point should be the geometric arrangement you need between the
wall and the IR detector. The robot sensor does not exactly square off with the
wall, but does give the greatest measurement sensitivity. Can you explain why?

b. With the proper orientation of the robot and the wall. Measure the IR intensity
with the wall touching the robot and in increments of 1 inch all the way out to
where the reading no longer is affected. Plots this data on a graph. The IR
readings on the y-axis and the distance in inches on the x-axis.

Data Analysis (Advanced)
a. Did you get a strange value for the wall up against the robot? Explain.
b. At what distance did the reflected IR light from the wall have no effect on the IR

reading?
c. Consider only the part of the plot where the data changes each successive

measurement. Solve for the coefficients (a,b,c) of the quadratic I= ar2+ br + c from
three simultaneous linear equations. Obtained the three equations by finding I, on the
curved part of your plot, for 3 widely separated values of known distance r. For more
sophisticated users, use a minimum least-squares fit to a quadratic equation.

d. Plot the resulting quadratic with the coefficients you found, together with the
measured curve. Compare at several points. Does the quadratic curve seem to fit the
points in between the ones you actually selected to compute it?

e. What is the maximum error between the quadratic and the measured plot for the
curved part?

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

40

f. From your data, describe two ways to determine the distance to an object given the
reflected IR intensity? Will your answer be correct if the object is not the same
material and color as the one used to get the data? Explain.

11 APPLICATIONS
The directory TJPRO_Applications contains several TJ PRO™ “toy applications”. You
can approach these applications in several ways. One fun technique, perhaps the hardest,
load a program you know nothing about (don’t cheat and read the descriptions below, or
the code!) and run it and try to guess what it does. This, in general, is not easy! Next,
program the behavior you observed and compare the robot’s behavior executing your
program with its behavior executing the original. Does the robot really behave the same
for the two programs? This question is not trivial. Comparing behaviors of robots is not
yet a science. Now, compare your code with the original code. The two programs
probably differ greatly in detail, if you didn’t look-ahead!

Another approach, similar to what I have done throughout the manual, is for you to write
a behavior program from behavior specifications. Here, too, you can compare the robot’s
behavior running your program and running the given solution. This approach is taken for
the program faceoff.c in the paragraphs below.

A third approach to these programs: read the code and descriptions. Load the code and
observe the robot in action. Was it what you expected? Does the robot do strange things
in strange circumstances? Think of ways to improve the behavior program or expand the
behavior capabilities using one of the given programs as a base.

Finally, of course, make copies of these programs, modify them to change the behaviors
by a little or a lot, and test your changes. As you become more experienced you will write
applications of your own, applications limited only by your imagination.

11.1 Programming a Behavior from a Specification
In this section you will program a behavior for the robot from a description of that
behavior. I identify and name some key variables to provide a common basis for discussion
and help you get started. You do not have to use those variable names, or even develop
the algorithm in the direction that I layout, of course. But, the learning game requires you
to meet specs, or have fun, or diverge in your own direction with an off-the- wall “non-
solution”…as long as you get something out of the game!
.
Program a Face_Off Behavior

Write an IC program faceoff.c for TJ PRO™ that turns the robot to face a wall and
stops it there.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

41

Detailed Description of Face_Off Behavior
TJ PRO slowly rotates counterclockwise about the left wheel (speedl=0,
speedr=12) until its front faces parallel to a wall. The robot rotates for move_time
= 50L milliseconds and then stops for ir_measure_time = 350L milliseconds
to give the IR detectors time to stabilize on their new values. This process repeats until
both IRs read the same value.

I place the robot at an angle with the right IR sensor further from the wall than the left
IR sensor. The left IR sensor is about 7 inches from the wall. As the robot rotates
counterclockwise, the right IR values slowly increase, so when it matches the left IR,
the motion is complete. You can actually place the robot at any orientation near the
wall. It moves so slowly, however, that you may not have the patience to wait for it to
rotate almost 360 degrees!

The value of the IRs must indicate the presence of an object. Since the baseline IR
values hover around the low eighties, I selected irr_threshold = 97, meaning
the right IR must read at least that amount or no wall is assumed to be nearby. By
symmetry, if the two IRs are identical and the surface is flat with uniform reflectance,
the robot's front-to-back diameter should be perpendicular to the surface when the IRs
read the same value. Because the dc motors on TJ PRO cannot be precisely controlled,
it is impossible to get the robot front-to-back axis exactly perpendicular, even for a
really good surface.

Parameter Manipulation
You might want to play with the various parameters speedl, speedr,
move_time and ir_measure_time to test the various tradeoffs. If so, be sure to
declare all of them persistent.

Comment: Although you may have calibrated the servo motors, they still drift, so low
speed control is iffy.

A solution to this exercise is faceoff.c in the TJPRO_Applications directory.

11.2 Application Program Descriptions
Brief Description of attractjp.c

 TJ PRO™ will be attracted by anything that moves close to it, or it moves close to! If
TJ PRO™ bumps into anything it becomes shy and backs off and then waits for
something to move close to it again.

Playtime with attractjp.c
Put the robot in the middle of a room with lots of free space around it. Reset the robot
and touch the back bumper switch to start the robot. Nothing happens. Wave your hand

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

42

in front of the robot. It’s alive! Now, slowly move your hand about. TJ PRO™ will
follow your hand motion unless it locks onto your leg and bumps you. Miffed, TJ
PRO™ backs off and turns some random angle and pouts. After pouting for a second,
the robot will head right for any close by object or, if none is near, wait until an object
comes close.

Questions
a) Roughly, how close does your hand or object have to be to activate attraction?
b) What program parameter will change the answer to a)?9

c) Roughly determine how close does your hand has to be for the robot to track it?
d) What program parameter will change the answer to c)?10

e) Make a copy of this program and make changes to the parameters and observe the
behavior changes. Try to predict what will happen beforehand. How often are you
surprised at the robot behavior resulting from your changes?

Brief Description of avoidtjp.c
This program realizes a simple collision avoidance program. TJ PRO™ will read each
IR detector, and turn away from any obstacles in its path. Also, if something hits TJ
PRO™'s bumper, it will backup, turn, and go forward again.

Playtime with avoidtjp.c
Put the robot anywhere in a room. Reset the robot and touch the back bumper switch
to start the robot. The robot will begin to move about avoiding bumping into obstacles.
Sometimes the robot backs up and jams into an obstacle without responding until the
backup action timeout occurs. The program doesn’t account for that situation. In the
section on multitasking we will see how to easily correct for this behavior.

The robot may get trapped between two obstacles or caught in a corner and oscillate
indefinitely. I call this behavior the Braitenburg Trap, in honor of Valentino Braitenberg
whose first vehicle in synthetic psychology will invariably oscillate in a corner until it
dies of exhaustion.11

Caution!
Do not let TJ PRO™ oscillate too long as it can overheat and damage
the motor control electronics. Oscillations also increase the wear on
the motors and gearboxes, decreasing their lifetimes.

9 LOW_IR 95
10 MED_IR 99
11 Valentino Braitenberg. Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge, MA,

1984.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

43

Questions
a) What obstacles in your room does TJ PRO™ get stuck on/under/against? Explain

why the robot got stuck for those obstacles.
b) Explain the Braitenberg trap. Why does the robot oscillate?
c) With the existing program, TJ PRO™ will not see certain types of black surfaces

and bump into them. What program parameter will change the sensitivity of TJ
PRO™ so that it might possibly see the black surfaces?12 If you program the robot
to “see” the black surface, what happens when the robot approaches light colored
surfaces?13

d) Make a copy of this program and make changes to the above parameter and
observe the behavior changes. Try to predict what will happen beforehand. How
often are you surprised at the robot behavior resulting from your changes?

Evaluation of avoidtjp.c
The robot will not perform well in both a light colored environment and a dark
colored environment using avoidtjp.c. In environments that have both light and
dark obstacles, the overall performance can be marginal. How can this be corrected
or, at least, be improved? If the robot could somehow learn to adjust IR thresholds
according to environmental circumstances, surely its performance would improve.
This brings us to the next program.

Description of avcaltjp.c
 This collision avoidance program that learns to adjust its IR sensitivity based on
environmental factors. The self-calibration is based on bumper activity and average
translational speed (not velocity). TJ PRO™ will read each IR detector, and turn away
from any obstacles in its path that reads greater than the learned threshold. Also, if
something hits TJ PRO™'s front bumper, it will backup, turn "randomly", and go
forward. If something hits TJ PRO™'s back bumper it will go forward only for half the
time a front bump causes the robot to backup, turn "randomly", and continue forward.

The novel feature of this program is its ability to adjust its behavior based on
environmental conditions. The form of learning employed, while simple, is quite
powerful. Whenever the robot bumps an object from the front, the control algorithm
“presumes”14 that the IR threshold value (avoid_threshold) must be too high and
the objects being bumped do not reflect enough light to exceed the threshold before the
robot bumps into it. The avcaltjp.c algorithm corrects for the undesired bumps by
increasing the sensitivity of the robot motion control to lower IR readings. The process
continues until there are no further bumps. For low or overhanging objects that TJ

12 AVOID_THRESHOLD 100
13 The robot becomes “shy” and will not approach as close to obstacles as it did before.
14 To be more precise, the programmer who wrote the algorithm, namely me, presumes! I will tend not to
make such fine, semantic distinctions, but the reader should always be aware of their underlying
importance.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

44

PRO™ cannot see, lowering the IR threshold is counter productive as the bump has
nothing to do with the threshold being too high. Such situations “mislead” the
algorithm, but only temporarily, and insignificantly, if such situations are statistically
rare.

A new problem now arises. The robot can avoid “painful” bumps by simply not moving
or spinning in place! I discovered this in my first attempt to get it to automatically
calibrate the IR threshold that invokes aversion or evasive moves by the robot. The
robot would “panic” after a number of “painful” bumps in close sequence and simply
spin in the middle of the floor! To avoid these behavior attractors, there must be a
counterbalancing driving force “urging” the robot onward. The program does this by
positively reinforcing average forward motion during a fixed-sized, periodic time
window. I experimentally determined 3 seconds for mixing light and dark environments:
my study (light environment with brown stained, wooden baseboards and scattered
cardboard boxes) and my kitchen (black baseboards all around). I found 5 seconds too
long and 1 second too short. With this countervailing force, the robot might “panic” for
a while, but, continued urging of forward motion by steadly decreasing
avoid_threshold would get it moving forward again.

I limited the dynamic range of IR threshold adjustment between 90 and 120. These
constants can be changed through

#define THRESHOLD_HIGH 120
#define THRESHOLD_LOW 90

The IRs typically do not read below 84 (everything is an obstacle) and above 127
(nothing is an obstacle), so working thresholds should not be too “close”
(experimentally determined) to those numbers.

Since this program produces extremely interesting robot behavior, you will likely want
to play with this program extensively. I recommend that you convert the above
constant parameters, as well as the others discussed here, into persistent variables so
you can conveniently change them from your PC on the IC command line. Otherwise,
you have to change the program, unload the old version and download the new version.
If you take this approach, do not forget to initialize them appropriately.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

45

Figure 5. This code urges the robot to move forward.

The most difficult part of the program appears in Figure 5. The instantaneous
translational speed of the robot equals (speedr + speedl)/2. By taking a
running average of the robot translational speed (lines 15-16),

average_speedi = (n-1)*average_speedi-1/n + (speedr + speedl)/2*n;

the program nominally can determine if the robot is moving about. The average_speed
being large, close to 100%, does not guarantee the robot is moving about since its
wheels could be spinning full forward with the robot hung up. In such situations you
have to rescue the robot anyway, so a “hung up robot” little matters to the correct
functioning of the program under normal circumstances.

 1 if(mseconds()-mark_cal_time > AVERAGING_TIME)
 2 /*Adjust IR threshold if average speed not up to snuff*/
 3 {
 4 if((average_speed < AVERAGE_SPEED_MIN)&&(avoid_threshold <THRESHOLD_HIGH))
 5 avoid_threshold +=3; /*Not going forward. Get less sensitive*/
 6
 7 /*Reset calculation window for running average of robot speed */
 8 n=0;
 9 average_speed = 0;
 10 mark_cal_time = mseconds();
 11 }
 12 else
 13 /*Calculate the average speed during a five second time window*/
 14 {
 15 n++;
 16 average_speed = (n-1)*average_speed/n + (speedr + speedl)/2*n;
 17 }

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

46

The variable mark_cal_time records the instant of time the running average of the
speed begins to compute. After AVERAGING_TIME seconds (line 1), the program

Figure 6. This code adjusts the IR threshold when bumper contact occurs.

stops computing average_speed, checks to determine whether the robot has
performed better than AVERAGE_SPEED_MIN (line 4), and, if not increase the
avoid_threshold by 3 (line 5). Next, the code initializes the parameters for
computing average_speed once again (lines 8-10).

The code in Figure 6 adjusts the threshold whenever bumps occur (lines 8-9 for front-
bumps and lines 22-23 for back-bumps). Front-bumps lower the IR threshold, making
the robot more sensitive in avoiding obstacles. Back bumps increase the IR threshold,
making the robot less sensitive to obstacles. The latter may seem counter intuitive or
just simply wrong. Without it, however, the robot can get in such a “panicked” state
that it backs up full speed and jams into a wall or other object and strains and whines as
its wheels spin on the floor, not a pleasant sight or sound! The average speed

 1 /* This "if" statement checks the bumper. If the bumper is pressed, */
 2 /* Tj will back up, and turn. */
 3
 4 if(FRONT_BUMP)
 5 {
 6 motorp(LEFT_MOTOR, -MAXSPEED);
 7 motorp(RIGHT_MOTOR, -MAXSPEED);
 8 if(avoid_threshold>THRESHOLD_LOW)
 9 avoid_threshold -= 3; /*Bumped something. Get more sensitive*/
10 sleep(0.6);
11 turn();
12 }
13 /*
14 Sometimes the robot gets so sensitive it wants to backup permanently!
15 the following code causes the robot to become less sensitive and, thus,
16 get it out of the "backup attractor".
17 */
18 if(BACK_BUMP)
19 {
20 motorp(LEFT_MOTOR, MAXSPEED);
21 motorp(RIGHT_MOTOR, MAXSPEED);
22 if(avoid_threshold<THRESHOLD_HIGH)
23 avoid_threshold += 3; /*Bumped something. Get less sensitive*/
24 sleep(0.3);
25 turn();
26 }
27
28 if(avoid_threshold >THRESHOLD_HIGH)
29 avoid_threshold=THRESHOLD_HIGH ; /*Don't get too insensitive!*/
30 if(avoid_threshold<THRESHOLD_LOW)
31 avoid_threshold=THRESHOLD_LOW; /*Don't get too sensitive!*/
32
33 sleep(0.033);

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

47

adjustment will eventually correct this behavior, but it takes 3 seconds per adjustment
of 3 points, so the robot might be in “pain” for 12 seconds or more!

The rest of the front and back bumper code you have seen before. Lines 28-31 insure
that the code does not generate values of the IR threshold above the specified range
limits.

Playtime with avcaltjp.c
Put the robot anywhere in a room. Reset the robot and touch the back bumper switch
to start the robot. The robot may begin to move about avoiding obstacles. Since it
starts at the high IR threshold range, it will probably avoid ok, even in a cluttered
environment. Restart executions cannot guarantee a high threshold, remember, the
variable is persistent! In restart situations the robot may not behave as well in a
cluttered environment.

Make the environment too cluttered and the robot oscillates with “indecision”. There
are actually two distinct causes for indecision:
1) Everything appears too close to the robot and it rapidly turns here and there, or

spins, trying to find a free path, but getting nowhere.
2) When the indecision manifests as oscillations back and forth from left to right, the

cause is the Braitenburg Trap. You probably saw this behavior when TJ PRO™ ran
avoidtjp.c.

 If there is only marginally enough room for the robot to pass between two obstacles
with an IR reading of 120, the robot will oscillate a great deal before passing through,
although the process is quite painful to watch. If the opening is too marginal, the
oscillations will take too much time (>15 seconds). In such situations, rescue the robot
to prevent possible motor burnout.

Watch the performance of the robot. Expose the robot to a variety of rooms and
situations. If the environment changes radically from light to dark obstacles, for
example, the robot will start bumping into obstacles for a while until it adjusts its
threshold to accommodate the new situation. If the switch is from dark to light
obstacles, the robot may back up in “fear” or spin indecisively until it eventually
compensates.

In mixed environments the robot will forever be adjusting its threshold, occasionally
bumping into things, occasionally being “shy” or “fearful”. Depending on the detailed
nature of the environment, the robot may have extended periods of nominal behavior as
well.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

48

Questions
a) Do you consider that the TJ PRO™ executing avcaltjp.c actually “learns”?

Carefully defend your position on paper and file it for future reading.
b) Ask people who knows nothing about robots to observe TJ PRO™ in action. Do they

detect any “learning”? (Their answer will certainly depend upon their observational
capabilities). Help them (bias them?) to see how the robot changes its behavior. How
do they respond now?

c) Change the following parameters to persistent variables. Be sure to declare them
appropriately.

Parameters:
#define AVERAGE_SPEED_MIN 50 (Range: 0 to 100)
#define THRESHOLD_HIGH 120 (Range: 84 to 127)
#define THRESHOLD_LOW 90 (Range: 84 to 127)
#define AVERAGING_TIME 3000L (Range: 0 to infinity)

Vary these parameters and observe robot behavior changes. Can you quantify what
you see (To perform quantitative analysis of intelligent machine behavior, in general,
is a research question!)? In particular, note what happens for extreme values of the
various parameters. The upper bound on the parameter AVERAGING_TIME, in
principle, does not exist. For practical matters, after a certain value (10000? Less?)
the robot decision time frame becomes so large that, were it an insect, it would surely
get eaten before it could “decide” about any behavior changes!

Brief Description of racetjp.c
TJ PRO will be attracted by 40KHz modulated IR light, say from your TV remote! If the
robot bumps into anything it becomes shy and backs off and stops. Point your TV remote
at it and press any key. The robot will start up again and follow the light from the remote.
Make TJ PRO "heel" as a pet dog using your TV remote!

A really interesting thing about this program is that it is exactly the same as
attractjp.c with the omission of one line, IR_ON! The robot does not look for
reflected light generated by its own IR emitters, rather, it looks for an external source.
Any 40KHz modulated IR will serve as a source, and your TV remote generates such a
signal. Now you have an IR remote controlled robot. To stop the robot, just let it bump
into something!
The program is called “race” because you can line up several TJ PRO™ robots and race
them. Of course, the ‘PRO™ cannot tell who is its owner controller, so it can make for
some fun games with people trying to sabotage each other’s control!

Games with racetjp.c

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

49

You can device an incredible number of games with TJ PRO™ executing this program. I
will list two examples.

Single TJ PRO™
1. Develop an obstacle course with boxes in an enclosed arena, say 10 feet by 10 feet

square. The arena can be any shape or size, but a light colored, six-inch wall should
enclose it. Competitors cannot enter the arena. Set up a home position at one corner
and a goal position at the diagonally opposite corner. See which competitor can take
TJ PRO™ from home to goal the fastest using a TV remote.

2. Forget about the arena. Just make an obstacle course. My bedroom is a natural
obstacle course, so this part does not take any effort! Mark off a home and a goal
position. Race against time again. A problem with this version of the game is
controlling the controllers. Where can the controllers legally position themselves
during the course of a run?!

Multiple TJ PROs™ : ROBORACES™15

Make TJ PROs™ into ROBORACERS™16. Put racing stripes and numbers on them.
Layout a 20 feet long, straight, racecourse with START, FINISH and several LANE lines.
You can, at your own risk, use colored tape or washable colored ink to make the lines.

Be careful!
Make sure whatever you use to mark lines does not stain your floor!

 Line up the robots on the START line and the competitors on the FINISH line, with
remotes in hand and THUMBS-UP! The competitors cannot move from their posts during
the contest, no matter how badly they want to help their robot or do something
unspeakable to someone else’s robot. Assign a Race Track Announcer to call the race
This can be a most entertaining assignment! When the race track announcer commands
THUMBS-DOWN, the competitors press the TV remote buttons and the race is on. The
first TJ PRO™ to cross the finish line is the winner (regardless of who got it across!). Do
not tell the competitors that they can control their opponents ‘PRO. They will discover
that soon enough amidst the laughter and heat of competition!

12 MULTITASKING BEHAVIORS
In this section you will learn to use the multitasking facility offered by IC. To quote the IC
manual,

15 ROBORACES™ is a registered trademark of Mekatronix.
16 ROBORACERS™ is a registered trademark of Mekatronix.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

50

“One of the most powerful features of IC is its multi-tasking facility. Processes can be
created and destroyed dynamically during run-time.
“ Any C function can be spawned as a separate task. Multiple tasks running the
same code, but with their own local variables, can be created.
“ Processes communicate through global variables: one process can set a global to
some value, and another process can read the value of that global.
“ Each time a process runs, it executes for a certain number of ticks, defined in
milliseconds.”17

Essentially, any C function f() may be defined as a process. What distinguishes such C
functions from others? Nothing really, except that in main(), or some other function, the
statement

start_process(f(),<ticks>, <stack _size>);

starts the process f()on a virtual stack-machine for f()’s own private use for <ticks>
milliseconds (optional) with an optional stack size specified by the last parameter. The
<ticks> default equals 5. The stack size default equals 256 bytes, an adequate amount
for most TJ PRO™ applications, but sometimes you might want to specify smaller or
larger stacks. Typically, f()runs forever own its own virtual stack-machine by enclosing
all statements within the function by while(1){….}. But wait! There is only one real
processor to run all the virtual machines! To be fair, the virtual machines share the real
processor on a round-robin basis, in the order they were created, for the default of 5 ticks
(5 milliseconds each), unless specified differently by <ticks> above.

12.1 IC Multitasking in Operation
To develop an appreciation of how IC implements multitasking, consider the program
multitask1.c listed in Figure 7 and Figure 8. Four IC functions, a(), b(), c()
and d()share the microprocessor on the robot. The IC scheduler executes each process
the default 5 ticks, suspends execution of that process and passes control to the next
process in line.

17 IC Manual pp. 158-159.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

51

Figure 7. Structure of an IC program to multitask five processes. The code for each process is shown in
the next figure.

/**
 * Title multitask1.c *
 * Programmer Keith L. Doty *
 * Date August 27, 1998 *
 * Version 1 *
 * *
 * Description *
 * Run four concurrent process, only once, at different rates, using *
 * msleep. Press the back bumper switch to START. Each process writes *
 * a unique two character string before the sleep and after its sleep *
 * statement. By watching the characters display on your PC screen *
 * you can get an idea how the multitasking facility in IC works. *
 * Each process only runs once. *

*
 **/

/**************************** Includes **********************************/

/*
 Before loading this program, be sure you load the library files

twoservo.icb
twoservo.c
motorp.c

 serialtjp.c
*/

/************************ End of includes *******************************/

/*************************** Constants **********************************/

#define BUMPER analog(0)

/************************ End of Constants ******************************/

void main(void)
{
 while(BUMPER<126);
 init_serial();

 start_process(a());
 start_process(b());
 start_process(c());
 start_process(d());

}

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

52

Figure 8. Each of these four multitasked processes take different amounts of time to output two strings of
two characters each. The msleep()command forces the processes to consume more than the allotted five
ticks.

To help you visualize the execution sequence each process simply writes a string of two
characters to the screen at two different times. Once before an msleep()function call
and once after it. The duration of the msleep()function call exceeds the allotted time
for each process. The IC scheduler will invoke process a(), for example, approximately
2000 times before the process completes execution.

void a(void)
{
 write("a1");
 msleep(10000L);
 write("a2");

}/*end a()*/
/***/

void b(void)
{
 write("b3");
 msleep(1000L);
 write("b4");

}/*end b()*/
/***/

void c(void)
{
 write("c5");
 msleep(100L);
 write("c6");

}/*end c()*/
/***/

void d(void)
{
 write("d7");
 msleep(10L);
 write("d8");

}/*end d()*/
/***/

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

53

Experiment with multitask1.c
The directory TJPRO_Experiments holds multitask1.c as well as
multitask2.c, and multitask3.c. Refer to 10.4 Terminal Output without IC
to start up this program, which uses serial output to the PC screen. After you press reset
and push the back bumper, the Hyper Terminal VT100 simulated screen should output the
sequence a1b3c5d7d8c6b4a2. The sequence a1b3c5d7d8c6 appears instantly.
Approximately, a one-second delay separates the printing of c6 and b4 and nine more
seconds elapse before a2 prints. From the code you can see that each process starts, but,
because the msleep() time statement takes more than the allotted five ticks, each
process is suspended in turn to activate the next one. This is why you see
a1b3c5d7d8c6 almost instantly. The same four processes are activated over and over,
in the order abcd, until all have run to completion.

Questions
1) How long does it take for this program to execute?18 You can use the WIN95 clock to

measure seconds ticking as you watch the Hyper Terminal screen print out the
characters.

2) Add the independent process

void e(void)
{
while(1)
 {
 write("e9");
 msleep(1000L);
 write("e10");
 }/*end while(1)*/

}/*end e()*/

and call the resulting program multitask2.c.
3) Before executing the change in step 2), predict what will happen on the screen.

Were you surprised? If so, make other changes and try to predict what will print
after those changes. You might want to do this until you feel comfortable with the
idea of multitasking.

4) When you did this change, did you have to make any changes to the program other
than add the new function and the statement start_process(e()); ?19 In
programming multitasked robot behaviors, seek to code independent processes
that interact only through global variables, if at all. This decoupling of processes,
a favorite software engineering discipline, can greatly simplify your coding life
and reduce coding woes.

18 About 10 seconds, the same time as a() executing by itself.
19 No.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

54

Program Assignment
Change all the processes in multitask1.c to tasks that execute forever. Predict what the
screen will print (write it down on paper, no cheating!) and then compare with the actual
display.

Question
You will probably see an occasional splitting of two character sequences. Something you
did not see before in the earlier experiments. Can you explain why this happens?20

12.2 Multitasking in Robotics
The scope of this manual does not permit a deep probe into the use of multitasking as a
method of programming robotic behaviors. A sequel to this manual will take up the issues
in depth.

Many, if not most, simple robot behavior programs do not require multitasking. The
construction of complex robot behaviors from independent, simple behaviors running at
the same time motivates and supports the argument for multitasking. Unless you have a
great deal of experience with multitasking and real-time programming, however, you may
find multitasking robot behaviors not for you. Subtle task interactions can lead to days of
frustration and difficult to find bugs.

To wrap up this manual, I will integrate the avoid and attract behaviors along with the IR
threshold auto-adjustment processes. The resulting program, animatjp.c , appears in
the directory TJPRO_APPLICATIONS.

The program animatjp.c runs six processes

1. sense():
 Measures IR return.
2. average_speed_calculation(): state = 50
 Computes average forward speed of the robot.
3. arbitrate(): state = 40
 Controls which of the three processes, spin, avoid, or attract, executes next.
4. spin(): state = 30

20 Obviously, the process times out before it completes the write statement. This answer is a bit too glib,
however. If the IC scheduler could perform zero-time context switching, switching from one process to
another, and if each processes took integer multiples of 5 ticks, then split writes would not occur for the
sleep times chosen. But, context switching does take time. As this tiny amount of time accumulates, it
eventually becomes large enough to affect the write output sequences.

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

55

Spins the robot in place while looking for a source of IR emissions with the robots IR
emitters off.

5. attract(); state = 20

 Moves the robot toward any 40KHz source of IR radiation, for example, a TV
remote.
6. avoid(): state = 10

Moves the robot about, avoiding obstacles and auto-adjusting the robot's sensitivity to
IR.

Program Operation
Process arbitrate() invokes spin() for a fixed amount of time. Process spin() checks for
external 40KHz modulated IR radiation. If spin() finds IR, it will stop turning the robot.
After spin-time-out, arbitrate() halts spin() and invokes the two processes avoid() and
average_speed_calculation(), if spin() did not find IR , or attract(), if spin() did find IR. As
long as the IR reception is above a certain minimum, the robot continues to executes
attract(). If IR is lost, arbitrate() invokes spin() again and the process repeats.

Playing with animatjp.c
With TJ PRO™ on a stand, download the program, press reset and push the back bumper
switch closed. Monitor avoid_threshold while the program executes. Notice that
this variable decreases by 3 each time you press the front bumper and increases by 3 each
time you press the back bumper. The former is “punishment” for the robot being too
insensitive to its IR readings and bumping into too many objects. By decreasing
avoid_threshold, the robot becomes more aware of objects further away. The latter
is “punishment” for backing up and bumping into things, presumably because the robot is
so “shy” (too sensitive to IR). Increasing the avoid_threshold decreases the range at
which the robot can detect objects.

Monitor the variable state. Watch how the processes change. After you see the pattern,
take any TV remote and hold it in front of the robot with any button pressed, say a
channel-digit. Make successive reads of state until state = 20. Keep the button
pressed and slowly wave the TV remote from side-to-side. The wheels should change their
speed to effectively turn the robot towards the remote.

Since the TV remote’s IR signal is so strong, the robot IR detectors may both saturate,
even when you point directly only at one of them. In such cases, the remote appears to be
straight ahead and the robot turns both wheels equally. You might have to point 45
degrees away from center to generate different IR detector responses, hence, an IR
controlled turning motion. To gain better IR control, you can partially block the remote’s
output LED with black electricians tape to make the IR signal more collimated, hence,
directional. You can examine the IR response through the variables irdl (left IR
detector) and irdr (right IR detector).

MEKATRONIX™
TJ PRO™ Education Manual Using IC

09/07/98

Gainesville, Florida Phone 407-672-6780

56

Place TJ PRO into an environment with different colored walls. Watch the robot’s
response as it moves about.

Questions
1) When the robot falls into a Braitenberg trap does it remain stuck there? Explain what

happens.21

2) How long can the program stay in the attract() process?22 You can hypothesize
an answer based on experiments. What happens if you keep a TV remote button
pushed down while pointing the remote at the front of the robot? You can also read
the code for the arbitrate() process and find out.

3) Run the robot in a uniformly light-colored environment and then switch to a
uniformly dark-colored environment. What happens initially?23 Switch environments
again and observe the initial behavior. If the light-colored environment is cluttered
and the obstacles are separated by just a few robot diameters, what do you expect the
initial behavior to be?24

4) If you run the robot in an environment with light and dark wall and obstacles, what
behavior do you predict?25

13 FURTHER EXPLORATION
This introductory manual only hints at the tremendous experimental possibilities available
to you with your TJ PRO™ robot. The basic understanding of TJ PRO™’s capabilities
that you have received from studying this manual and carrying out its experiments will
help you to develop truly sophisticated robot behaviors.

Good luck and enjoy☺

21 Typically, spin() will break the trap.
22 The program stays in attract() as long as external IR is detected.
23 The robot frequently bumps into walls, and then not at all as it “learns” the new environment.
24 TJ PRO should “shy” away from the light obstacles at a larger distance than from dark obstacles. If the
obstacles are several diameters apart from each other, the robot might tend to spin ineffectively until the
average speed requirement kicks-in and makes the robot less sensitive to IR.
25 The robot will “seek” an IR threshold sensitivity that will prevent bumping into obstacles and at the
same time produce a net 50% average speed. This goal may or may not be consistent with reality.

