
Copyright 1998 by Mekatronix Corporation

LANGUAGE
REFERENCE
MANUAL

B Y

Keith L. Doty

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

2

AGREEMENT
This is a legal agreement between you, the end user, and Mekatronix™. If you do not agree to the
terms of this Agreement, please promptly return the purchased product for a full refund.

1. Copy Restrictions. No part of any Mekatronix™ document may be reproduced in any form

without written permission of Mekatronix™. For example, Mekatronix™ does not grant the
right to make derivative works based on these documents without written consent.

2. Software License. Mekatronix™ software is licensed and not sold. Software documentation

is licensed to you by Mekatronix™, the licensor and a corporation under the laws of Florida.
Mekatronix™ does not assume and shall have no obligation or liability to you under this
license agreement. You own the diskettes on which the software is recorded but
Mekatronix™ retains title to its own software. You may not rent, lease, loan, sell, distribute
Mekatronix™ software, or create derivative works for rent, lease, loan, sell, or distribution
without a contractual agreement with Mekatronix™.

3. Limited Warranty. Mekatronix™ strives to make high quality products that function as

described. However, Mekatronix™ does not warrant, explicitly or implied, nor assume
liability for, any use or applications of its products. In particular, Mekatronix™ products are
not qualified to assume critical roles where human or animal life may be involved. For
unassembled kits, you accept all responsibility for the proper functioning of the kit.
Mekatronix™ is not liable for, or anything resulting from, improper assembly of its products,
acts of God, abuse, misuses, improper or abnormal usage, faulty installation, improper
maintenance, lightning or other incidence of excess voltage, or exposure to the elements.
Mekatronix™ is not responsible, or liable for, indirect, special, or consequential damages
arising out of, or in connection with, the use or performances of its product or other damages
with respect to loss of property, loss of revenues or profit or costs of removal, installation or
re-installations. You agree and certify that you accept all liability and responsibility that the
products, both hardware and software and any other technical information you obtain has
been obtained legally according to the laws of Florida, the United States and your country.
Your acceptance of the products purchased from Mekatronix™ will be construed as agreeing
to these terms.

MANIFESTO
 Mekatronix™ espouses the view that the personal autonomous agent will usher in a whole new
industry, much like the personal computer industry before it, if modeled on the same beginning
principles:
• Low cost,
• Wide availability,
• Open architecture,
• An open, enthusiastic, dynamic community of users sharing information.

Our corporate goal is to help create this new, exciting industry!

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

3

WEB SITE: http://www.mekatronix.com
Address technical questions to tech@mekatronix.com
Address purchases and ordering information to an authorized Mekatronix Distributor
http://www.mekatronix.com/distributors

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

4

TABLE OF CONTENTS
1 SCOPE ..5

1.1 Language Specific PROGO™..5
1.2 Requirements to run PROGO™...6
1.3 Robot Specific PROGO™..6

2 MOTIVATION BEHIND PROGO™...6
3 A BRIEF DESCRIPTION OF PROGO™...7

3.1 Esthetic Code Writing ...8
3.2 Commenting PROGO™ Programs ..8
3.3 Structure of a PROGO™ Program...9
3.4 Simple PROGO™ Programs ...10
3.5 User Function List : ICC11 or ANSI C Only ...11
3.6 PROGO™ Dictionary..12
3.7 PROGO™ Functions...12

4 PROGO™ STATEMENTS..14
4.1 Assignment Statement...15
4.2 Arithmetic and Logic Expressions...16
4.3 If Statement...17
4.4 Repeat Statement...18
4.5 While Statement..18
4.6 Input and Output Functions...19

5 ROBOT KERNEL ...21
5.1 Timing Variables and Functions in PROGO™..22
5.2 TJ and TJ PRO™ Sensor Functions...23

6 FINAL COMMENTS ..23
7 PROGO™ LANGUAGE SUMMARY ...25

 LIST OF FIGURES
Figure 1. A schematic view of a PROGO™ program supported by ICC11 or ANSI C. .. 9
Figure 2. A schematic view of a PROGO™ program supported by IC. ... 10
Figure 3. A robot control program to trace out a square in the clockwise direction. The program employs a user-

defined function. ... 13

LIST OF TABLES
Table 1 Bracketing keywords in PROGO™.. 8
Table 2 Dictionary Syntax and Semantics .. 12
Table 3 PROGO™ Language Statements ... 14
Table 4 PROGO™’s Relational, Logic and Arithmetic Operators .. 17
Table 5. Input and Output for PROGO™ Programs ... 20
Table 6. Robot Motion Function Kernel ... 21
Table 7. TJ PRO™ Sensor Functions ... 23

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

5

1 SCOPE
This manual is intended for teachers, educators, university and advanced high school students,
hobbyists, researchers and anyone else interested in advancing the infrastructure of robotics and
advanced technology in our society. The goal of this manual is to enable teachers and professors,
from middle school through the university level, to develop exciting, stimulating, and entertaining
instructional materials for hands-on laboratories using embodied, intelligent, autonomous mobile
robots.

This manual assumes that the individuals learning PROGO™ have little to no knowledge of the C
programming language. Teachers who plan to teach PROGO™ to middle school students and do
not know C can use PROGO™ as a vehicle to learn C themselves. Those who do know C will
immediately understand how #define macros define PROGO™ so the C preprocessor can
translate valid PROGO™ programs into valid C programs.

PROGO™ provides a vehicle for beginners to write sophisticated programs for intelligent,
autonomous mobile robots after less than an hour of instruction. Ultimately, PROGO™ will
enable young learners to move on to C and, later still, to JAVA, with ease and high motivation.

Mekatronix has presented PROGO™ to eighth graders with success. Don’t let that surprise you.
Eighth graders are really smart! A specific corporate goal is to help middle school and high-school
technology teachers introduce this exciting, fun, highly motivating technology to children. We
believe Mekatronix robots and PROGO™ represent a substantial step in the right direction.

1.1 Language Specific PROGO™
The underlying C languages, ICC11 and Interactive C, that support PROGO™ differ from one
another since neither realize standard ANSI C. The ICC11 version of PROGO™ will work with
any ANSI C, but not with IC. IC requires a separate PROGO™ implementation.

From the PROGO™ programmer’s perspective, there is only one difference between an ICC11 or
ANSI C supported PROGO™ and an IC support PROGO™:

NOTE BENE:
Standard C and ICC11 require the User Function List (defined
below) while IC insists the User Function List be omitted!

You can use either the DOS or the Wind95 version of ICC11 compiler or the IC interpreter to run
PROGO™. The IC DOS version is freeware.

This manual assumes you have an ICC11 supported PROGO™ and that you have purchased a
copy of the HSSDL11 and will use that program to load PROGO™ code into the robot. For
ICC11 PROGO™ Mekatronix does not support PCBUG11 downloading.

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

6

The manual applies equally well to the IC DOS or WINDOWS supported PROGO™ versions. In
those rare instances where the IC version forces different actions or coding procedures from the
ICC11 version, an italicized note will highlight the differences.

Caution
IC and ICC11 are not Standard ANSI C, so be careful of language limitations
using them. The differences are discussed in the IC and ICC11 Users Manuals,
respectively. ICC11 is closer to the standard and has fewer limitations.

1.2 Requirements to run PROGO™
This manual provides the definition of the PROGO™ programming language syntax and
semantics coupled with exercises and applications realized with the kernel set of robot functions.
You will need ICC11 compiler and PROGO.c, or the

IC VARIANT
You will either have either IC DOS (freeware) or the commercial WINDOWS version of IC, if
you do not have ICC11.

To do the downloading you will need the robot, a 6-wire Mekatronix serial cable and a serial
cable to connect your personal computer to the Mekatronix D25 connector on the MB2325
communications board. Any of these items can be obtained through a Mekatronix distributor. For
distributors check

(http://www.mekatronix.com/distributors).

1.3 Robot Specific PROGO™
Each Mekatronix robot requires separate underlying robot sensor and actuator driver software to
support PROGO™. Be sure you get the correct version of PROGO™ for your robot. The
language itself does not change from robot to robot, although robot specific functions will. All
Mekatronix robots will share a core set of drivers. That core will be explained in this manual
along with PROGO™ proper.

If you own a Mekatronix robot, you may also want to supplement this reference manual with an
appropriate PROGO™ Applications Manual. For example, the applications manual for the TJ
PRO™ robot is called the PROGO™ Applications Manual for the TJ PRO Robot.

2 MOTIVATION BEHIND PROGO™
Programming behaviors for intelligent autonomous mobile robots (IAMRs) presents a significant
challenge to the beginner. To become an IAMR practitioner, you must learn and become familiar
with the software development cycle and the specific capabilities of the robot you program. The
software development cycle may be described as a set of activities, not necessarily sequential, yet
with obvious dependencies:

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

7

Software Development Cycle
1. Specify the problem
2. Develop algorithms and data structures for the problem solution
3. Implement a solution
4. Test, Verify and Document solutions

While sharing traditional techniques and software development activities, robot programming
requires additional considerations:

1. The program must interface with the outside world through machine actuation and
sensation

2. A robot will not, in general, execute commands with the precision of a digital computer
3. Robots must respond in real-time for most operational situations

Together, robot specific learning and program development activities establish a rather demanding
potential barrier to individuals wanting to gain access to the exciting world of intelligent
autonomous mobile robots. Mekatronix has developed robots and PROGO™ to lower those
barriers and make programming IAMRs easier and fun.

PROGO™ reads something like a highly structured programming language like Pascal, but,
unfortunately, does not have the compiler enforcement features of Pascal. PROGO™ may seem a
bit wordy, and certainly limited, for C programmers. But, the purpose of PROGO™ is not to
convert C programmers to a new language, but rather assist beginners to write robot behavior
programs immediately in a readable, maintainable manner.

PROGO™ maps directly into a valid C language program using C’s macro definition feature.
Since PROGO™ builds on C through a standard C-Preprocessor, you can mix C statements
among the PROGO™ statements and, as you learn more C, migrate to C completely, if desired.
PROGO™ eliminates obscure C punctuation, structures and notation and adds English like
phrases to make statements easier to read and remember. PROGO™ also supports a number of
robot motion and sense commands, the robot kernel, to make programming Mekatronix robots
easy. What is the price paid for these advantages? PROGO™ statements typically, but not always,
require a few additional keystrokes. The additional keywords also prevent users from naming
variables with those keywords. These consequences appear insignificant and well worth the
advantages gained, especially to beginning programmers who do not know the C language.

 PROGO™ requires a C compiler for the target processor, which, for the Mekatronix robots, is
the Motorola MC68HC11 A or E series chips.

3 A BRIEF DESCRIPTION OF PROGO™
This section provides a global perspective of a PROGO™ program. Later sections will give
graded examples applicable to the TJ PRO™ robot for purposes of illustration.

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

8

3.1 Esthetic Code Writing
Since PROGO™ syntax is white-space insensitive, carriage returns, line feeds, spaces and tabs
have no affect on the interpretation of a PROGO™ statement. Judicious choice of white spaces
makes a program more readable, hence, correctable. Several useful rules for white-space usage
follow:

White-Space Usage
1. One PROGO™ statement per line.
2. Statements can be blocked into “paragraphs”, meaning that tightly coupled statements can be

on adjacent lines. Statements that begin another “paragraph” of computation can be separated
from a previous statement by a blank line. Such breaks give the reader visual cues about the
progress of the computation.

3. A bracketing keyword (Table 1) should have its own private text line to be easily visible!
4. Statements should be indented 2 or 3 columns from the first letter of the bracketing keywords

containing them.

Table 1 Bracketing keywords in PROGO™
 Program_begin Program_end perform end
Function_begin Function_end Repeat_begin Repeat_end

3.2 Commenting PROGO™ Programs
The special symbol sequence in the quotes “/*” begins a comment and the sequence “*/” ends a
comment. Comments cannot be nested. Doing so will often create subtle, hard-to-find program
bugs. A popular way of commenting, which avoids many of the compiler problems generated by
incorrect commenting, has the following form:

/*
 The comment begins here. Anything typed
 between the comment markers will have no
 affect on the program in which it is embedded.

 You can use as many lines as needed to
 say what needs saying.

*/

With this style of commenting, you can scan the left-side of the listing and easily detect missing
closing comment marker “*/”. Comments written at the same column position as the bracketing
keywords (Table 1) surrounding it provides a visual cue as to the scope of the comment, assisting
in further readability.

Comments should be succinct, informative, and descriptive. A good way to judge a comment,
“Does the comment make understanding the program much easier?” Leave out comments that
produce a “No” answer to this question!

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

9

3.3 Structure of a PROGO™ Program
Every ICC11 supported PROGO™ program (Figure 1) begins with a User Function List of
user defined functions, a Dictionary declaration of user-defined integer variables. A PROGO™
program, consists of PROGO™ (or C) statements, between Program_begin and Program_end.
All user-defined functions must be listed after the Program_end statement.

IC VARIANT
An IC supported PROGO™ program (Figure 2) has the same structures as an ICC11 version,
except that the User Function List must be left out.

Figure 1. A schematic view of a PROGO™ program supported by ICC11 or ANSI C.

/*User Function List*/
 Function <function_name1> used
 ...
 Function <function_nameK> used

/*Declare integer variables*/
 Dictionary
 <variable>,
 <variable>,
 ...
 <variable>
 ok

/*Program Brackets*/
 Program_begin
 <block of PROGO™ statements>
 Program_end

/*Function Defintions*/
 Function <function_name1>
 Function_begin
 <block of PROGO™ statements>
 Function_end

 …
 …
 Function <function_nameK>
 Function_begin
 <block of PROGO™ statements>
 Function_end

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

10

Figure 2. A schematic view of a PROGO™ program supported by IC.

3.4 Simple PROGO™ Programs
The simplest PROGO™ program, a program that does nothing, consist only of two keywords

 Program_begin
 Program_end

A program that moves a robot forward 20 inches and stops has an added statement

 Program_begin

 Forward 20 inches

 Program_end

To move a robot around a 20 inch square in a clockwise direction code

 Program_begin

 Forward 20 inches
 Turn_right 90 degrees

/*Declare integer variables*/
 Dictionary
 <variable>,
 <variable>,
 ...
 <variable>
 ok

/*Program Brackets*/
 Program_begin
 <block of PROGO™ statements>
 Program_end

/*Function Defintions*/
 Function <function_name1>
 Function_begin
 <block of PROGO™ statements>
 Function_end

 …
 …
 Function <function_nameK>
 Function_begin
 <block of PROGO™ statements>
 Function_end

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

11

 Forward 20 inches
 Turn_right 90 degrees

 Forward 20 inches
 Turn_right 90 degrees

 Forward 20 inches
 Turn_right 90 degrees

 Program_end

The last Turn_right command attempts to turn the robot into its original orientation and has no
affect on the square itself.

The PROGO™ Repeat statement simplifies the square traverse program above,

 Program_begin

 Repeat 4 times

 Forward 20 inches
 Turn_right 90 degrees

 Repeat_end

 Program_end

3.5 User Function List : ICC11 or ANSI C Only
For the ICC11 or ANSI C supported PROGO™ the programmer must list all the user-defined
functions before the variable dictionary. This corresponds to the C language requirement for
listing the function prototypes. While the requirement probably satisfies some compiler efficiency
requirement, the practice also benefits readability of the code. The list serves as a function
dictionary and alerts the reader to the specific functions developed for the program.

The User Function List consists of a list of statements of the form

Function <function_name1> used
 ...

Function <function_nameK> used

The keyword Function and used must appear before and after each user-defined function name,
respectively.

IC VARIANT
Do NOT include A USER FUNCTION LIST for IC.

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

12

3.6 PROGO™ Dictionary
Formally, PROGO™ only supports integer variables in the dictionary. The variables in the list
between the keywords Dictionary and ok must be separated by commas (refer to Table 2). All
variables in the list will be typed integer (C data type int). Advanced users can use any C data
type declaration, but those declarations must be outside a dictionary declaration. A dictionary
declaration before Program_begin will be global to the user program and all the user-defined
functions. You can define dictionaries within the main program and user-defined functions, too.

Table 2 Dictionary Syntax and Semantics

PROGO™ Syntax C-Semantics
Dictionary

variable_1,
variable_2,
. . .
variable_n

ok

int variable_1,
 variable_2,
 . . .
 variable_3;

In the main program the dictionary must follow immediately after Program_begin. For user
defined functions the dictionary must immediately follow Function_begin. The scope of
dictionary variables is limited to the function, including the main program, in which it is defined.
Dictionaries defined outside of functions, but after Program_end, will be global to all functions
listed subsequent to it.

3.7 PROGO™ Functions
Anywhere after Program_end the user may define a function with the following syntax.

 Function <function_name>

 Function_begin

 <block of PROGO™ statements>

 Function_end

To call a function in a program or another function, use the function’s name followed by the
keyword call.

<user_defined_function_name> call

The above structure is called a function statement in PROGO™.

The next version of the square trace program (Figure 3) uses a function to produce an angle and
a side of a square. The main program calls this function four times to produce the square. For this
particular program there is no obvious advantage to write a function. However, function
encapsulation often naturally leads to generalization and possible reusable code, code useful for

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

13

programming other applications. Writing functions, even in situations where nothing in the
problem solution seems to suggest doing so, often proves to be good programming practice.

Figure 3. A robot control program to trace out a square in the clockwise direction. The program employs a user-
defined function.

The programmer must define the function square_side after the Program_end keyword and
declare its usage before the Program_begin keyword in the User Function List. The Repeat
statement calls, or executes, the function four times.

The Wait statement makes an appearance in Figure 3. After each move the Wait statement stops
the robot for 1000ms (milliseconds), i.e., one second, to make each move crisper and more
precise. If you attach a colored felt pen to the robot and watch it trace the square on blank
newsprint taped to the floor, you will actually observe less rounding of the corners when a one
second pause separates the turning and forward motions.

If a PROGO™ function alters the value of any variable global to the function, that value persists
after the function completes execution. If the function alters a variable defined in a dictionary local
to it, neither the variable nor its last assigned value exists after the function completes execution.

/*
 Make the robot trace a square in the clockwise direction.
*/

Function square_side used /* Delete this line if you are using IC */

Program_begin

 Repeat 4 times

 square_side call

 Repeat_end

Program_end

/*
 What follows next is the definition of the function square_side
*/

Function square_side

 Function_begin

 Forward 20 inches
 Wait 1000 ms

 Turn_right 90 degrees
 Wait 1000 ms

 Function_end

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

14

As in C, PROGO™ functions can return an integer value with the Return statement,

Return <integer> now

For example, the TJ PRO™ function RIGHT_IR returns the value output by the IR detector on the
right underside of the robot.

4 PROGO™ STATEMENTS
PROGO™ programs consist of a sequence or <Block> of statements. Statements have several
functions in a program

1. Control the execution flow, i.e., what statements execute next,
2. Perform computations,
3. Govern input and output,
4. Actuate robot motors, a special type of output,
5. Read robot sensors, a special type of input,
6. Keep track of time.

All PROGO™ statements begin with a capital letter. The only exception would be a user-defined
function where the user has chosen to begin a function name with a lower case letter, for example,
the function square_side in Figure 3.

The syntax of the various PROGO™ statements appears in Table 3. There you will find the
following statement types

1. Assignment
2. If_then_or_else
3. If_then
4. Repeat
5. While
6. Do_forever
7. Function_call
8. Return
9. Repeat
10. Program Start

Table 3 PROGO™ Language Statements

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

15

User Function List
 Function <function_name1> used
 ...
 Function <function_nameK> used

Declare integer variables
 Dictionary
 <variable>,
 <variable>,
 ...
 <variable>
 ok

Program Start Statement
 Start

Program Brackets
 Program_begin
 Program_end

Function Defintion
 Function <function_name>
 Function_begin
 <block>
 Function_end

Function Call Statement
<function_name> call

Function Return Statement
Return <integer> now

Assignment Statement
 Set <variable> to <expression> ok

Repeat Statement
 Repeat <number> times
 <repeat_block>
 Repeat_end

While Statement
 While <test_expression>
 perform
 <while_block>
 end

Endless While Statement
 Do_forever
 <do_block>
 end

If Statement
 If <test_expression>
 then
 <then_block>
 end
 or_else
 <or_else_block>
 end

If Short Form: If without else
 If <test_expression>
 then
 <then_block>
 end

The previous section discussed the syntax and usage of the Function_call and Return statements.
The next few paragraphs will elaborate on the other statement types.

4.1 Assignment Statement
The Assignment statement in a procedural language stores the value of an expression into a
variable. The PROGO™ version employs three key words, Set, to and ok with the form:

Assignment Statement Syntax

 Set <variable> to <expression> ok

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

16

While Set is optional, the to and ok must be present. After execution the value of <variable> is
the same as the value of <expression>. The next paragraph explains what can be substituted for
the metavariable <expression>.

4.2 Arithmetic and Logic Expressions
 The metavariable <expression> is either an arithmetic or logic expression. The arithmetic
expression can be any valid combination of plus (+), minus (−), times (*), divide (/) and C library
functions or user-defined functions with integer return statements. As you learn more about C you
can employ floating-point functions and variables in your PROGO™ code. With proper data
declarations, PROGO™ permits any valid C expression. For a complete, technical description of a
C-expression, refer to any book on C. Informally, any valid algebraic expression written from a
keyboard using the PROGO™ operators and functions will compile correctly. However,
expressions like x + y/2 can be ambiguous. Does it mean (x+y)/2 or x + (y/2)? In PROGO™, as in
C, it is the latter. To avoid guessing or learning the detailed precedence and associativity rules,
use parentheses liberally to eliminate ambiguity in your own mind. Fortunately, one does not have
to understand all the complexities of writing expressions to do it successfully.

Example use of an expression:

Set x to b − a*(x+y)/2 ok

If, at the time of evaluating the expression, b=20, a=4, x = 10, y= 8, then after execution of this
assignment statement the new value of x= −16.

Relational and logic operators (Table 4) can be mixed with arithmetic ones, but requires more
advanced understanding. A 0 indicates a false result and 1 a true result in logic expressions.
Whether the expression produces logic or arithmetic results depends upon the structure of the
expression.

Example use of relational and arithmetic operators that produce logic results:

Set x to b greater_than (x+y)/2 ok

If, at the time of evaluating the expression, b=20, x = 10, y= 8, then after execution of the
assignment statement x =1 meaning true, since 20 is greater than 9.

The following, however, produces an arithmetic answer x= 3. The logic value of 1 is treated as
an integer 1 when used in an arithmetic expression :

Set x to (b greater_than (x+y)/2) + 2 ok

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

17

Table 4 PROGO™’s Relational, Logic and Arithmetic Operators

Bitwise Logical Operators
bit_and
bit_or
bit_not
bit_xor

C-Symbol
 &
 |
 ~
 ^

Relational Operators
 greater_than
 greater_than_or_equal_to
 less_than
 less_than_or_equal_to
 equal_to
 not_equal_to
 and
 or
 not

 C-Symbol
>
>=
<
<=
==
!=
&&
||
!

Arithmetic plus, minus, times, divide and
modulus
 +, -, *, / , modulo

(Same symbols used in C)

The bitwise operators facilitate the control and manipulation of bits, both in data structures and
hardware registers that control robot resources.

Example use of an expression:

Set x to b bit_and a*(x+y)/2 ok

If, at the time of evaluating the expression, b=20, a=4, x = 10, y= 8, then after execution of this
assignment statement the new value of x=4 can be computed as follows:

a*(x+y)/2 = 36 = 0x24 = (0010 0100)2 and b = 20 = 0x14 = (0001 0100)2

(0010 0100)2 bit_and (0001 0100)2 = (0000 0100)2 = 0x04 = 4

The notation 0x24 means that the number following 0x is a hexadecimal number. The binary
equivalent of a number is expressed with the notation of (<number>)2. A bitwise operator is one
that manipulates corresponding bits in each argument independently. In this example, the logical
And operation takes place.

4.3 If Statement
The conditional statement determines the execution of the <then_block>, a list of PROGO™
statements, or the <or_else_block>, another list of PROGO™ statements. If <test_expression>
has a logic value of 1 or a non-zero numerical value the <then_block> executes, otherwise the
<or_else_block> executes.

If Statement Syntax
 If <test_expression>
 then
 <then_block>
 end
 or_else
 <or_else_block>
 end

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

18

Many situations do not require an or_else clause. For convenience in those cases, the or_else
clause can be dropped altogether.

If Short Form Syntax (If without or_else):
 If <test_expression>
 then
 <then_block>
 end

4.4 Repeat Statement
The Repeat statement provides a convenient method for coding iteration for a fixed number of
times. The syntax is shown below. Figure 3 provided an application of the Repeat statement.

Repeat Statement Syntax

 Repeat <number> times
 <block>
 Repeat_end

4.5 While Statement
The While statement provides for conditional iteration. Technically, only the While statement is
needed for any kind of iteration since other forms of iteration, the Repeat statement for example,
can be implemented by the While statement.

While Statement Syntax
 While <test_expression>
 perform
 <while_block>
 end

Suppose, in a particular situation, you want a robot to continue moving until it bumps into an
object with its front bumper.

Go
While not FRONT_BUMP
perform
end
Stop

The Go command moves the robot forward at full speed. The effects of the Go command persist
even after the program terminates execution of the instruction and moves on to the next one. As
long as the robot does not detect a front bump, the program executes…what? Nothing! The
<while_block> of statements is empty ! Essentially, the robot program hangs up on the While
statement, doing nothing while the robot continues to move forward until it detects a front bump.

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

19

When the program detects a front bump, execution proceeds to the next instruction in the
program. In this example, the program executes Stop and the robot halts.

A special form of the While statement useful in robotics is the Endless-While. Typically, a robot
program executes “forever”, or at least until you stop it manually!

Endless While Statement
 Do_forever
 <block>
 end

Finally, we mention the

Program Start Statement
 Start

The Start statement hold up further program execution until the back bumper switch is
depressed.

4.6 Input and Output Functions
PROGO™ provides for elementary input and output and a few screen commands (Table 5). All
terminal screen IO executes the RS232C serial protocol.

Serial IO Protocol
9600 baud, 8 data bits, 1 stop bit, no parity bit, and no flow control.

With a robot connected to your Personal Computer through COM1 and your PC running Hyper
Terminal or some other VT100 terminal simulation program, execution of the sequence of
statements

 Clear_screen
 Home_screen
 Display “The value of x is printed below.” on_screen
 Move_cursor“4” row “6” column
 Write x on_screen

will clear the terminal screen on your personal computer, move the cursor to Home (1st row, 1st

column on the screen), display the line of text between the double quotes, move the cursor to the
4th row and 6th column, and then print the integer x starting at the 4th row and 6th column.

When using Display and Move_cursor be sure to bracket the string of characters with double
quotes.

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

20

Table 5. Input and Output for PROGO™ Programs

Output from Robot to Personal Computer
 Display “<character string>” on_screen

 Clear_screen
 Home_screen

 Write <variable> on_screen

Cursor Control VT100 Type Terminal
 Move_cursor“<x>”row“<y>”column

Input to the Robot from the Personal Computer
 input_number
 input_character

In some instances you will want to input parameters to your robot before turning it loose on the
floor. The command statements input_number and input_character allow you to input an
integer or a character, respectively, into the robot.

The sequence

 Display "Type in a character to get its numerical value: " on_screen
 Set x to input_character ok
 Write x on_screen

displays the characters between the double quotes. If you type the character ‘A’ (capital A), the
value of the integer x = 65 and the screen will display the number 65 just one blank space after the
colon, like so,

Type in a character to get its numerical value: 65

On the other hand,

 Display "The value of x = " on_screen
 Set x to input_integer ok
 Write x on_screen

will not accept non-numeric characters. In fact, any non-numeric character terminates the integer
as far as input_integer is concerned.

IC WINDOWS VARIANT
To use IO with IC WINDOWS, you must exit IC before invoking Hyper Terminal.

IC DOS VARIANT
To use IO with IC DOS, you must exit IC and enter Kermit or some otherVT100-terminal
simulator.

This completes the list of PROGO™ statements.

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

21

5 ROBOT KERNEL
A basic set of robot functions, called the robot kernel, associates with the PROGO™ language.
These functions apply to all Mekatronix robots, with the exception of the wheel move commands.
Those commands obviously do not apply if the robot has no wheels, and are ambiguous when a
robot has two or more powered wheels per side.

The forward and backward commands were discussed in an earlier example.

The functions Go, Reverse, Stop command a robot to just what they say. The effect of these
commands persists after their execution. To change the robot’s motion requires the execution of
another motion command. The wheel commands

 Left_wheel <number> percent

 Right_wheel <number> percent

 Move <number> lws <number> rws

and the spin commands Spinccw and Spincw also have this persistent property. All the remaining
motion commands execute for a finite time or distance.

Table 6. Robot Motion Function Kernel

Move Robot Forward a Specified Distance
 Fwd <number> inches
 Forward <number> inches

Move Robot back a Specified Distance
 Back <number> inches
 Backward <number> inches

Turn Commands
 Pivot_right <angle> degrees
 Pivot_left <angle> degrees
 Turn_right <angle> degrees
 Turn_left <angle> degrees

 Spinccw Spin counterclockwise
 Spincw Spin clockwise

Robot wheel move commands
 Left_wheel <number> percent
 Right_wheel <number> percent

 Move <number> lws <number> rws
 (lws means left wheel speed)
 (rws means right wheel speed)

Simple Motion Commands
 Go
 Reverse
 Stop

Time Delay Command
 Wait <time_in_ms> ms

Spinccw spins the robot counterclockwise about the robot’s center axis until the program
explicitly changes the motion. Spincw spins the robot clockwise about the robot’s center axis
until the program explicitly changes the motion.

The wheel speed arguments in the three wheel commands express a percentage of 100%. Thus, 50
means 50% of full speed and 100 means 100% of full speed, etc.

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

22

The pivot and turn commands differ as follows. The turn functions rotated the robot about its
center axis so there is no net translation. The pivot functions turn the robot about the axis
perpendicular to the floor and passing through the point of contact of the opposite wheel. Hence,

 Pivot_right 90 degrees
 Turn_right 90 degrees

both turn the robot 90 degrees, however, the pivot command translates the center of the robot
some because the pivot point is the left-wheel point-of-contact.

5.1 Timing Variables and Functions in PROGO™
The Wait command statement permits the programmer to time the duration of a given motion or
action in milliseconds. The maximum wait time you can specify equals 65,535 milliseconds, that
is, 65.535seconds. This time is sufficiently long for most behaviors. Implementing delays for
longer time periods can be realized by the predefined global variables,

 PROGO™ Time Variables, ICC11 or ANSI C
seconds 0 ≤ seconds ≤ 59

 minutes 0 ≤ minutes ≤ 59
hours 0 ≤ hours ≤ 23
days 0 ≤ days ≤ 65,535

The day variable cannot exceed 65,535 days or almost 180 years! These variables reset each time
the robot is reset.

IC VARIANT
IC time variables are not compatible with PROGO™ functions and statements without data type
casting. The user must understand type casting and data declarations long and float to use IC
time variables.

Mekatronix robots also support an interrupt-driven millisecond counter variable whose range
varies from 0 to 65,535:

 Variable Name Robot
timertj TJ
timertjp TJ PRO
timertk TALRIK

The timert_ program variable serves as a free running timer or counter that can be used to define
different timing functions. The Wait function uses this timer to implement the wait delay.

Use timert_ as read-only. Do not assign values to it as it will generate subtle side effects and
errors to code that depend upon the timer.

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

23

5.2 TJ and TJ PRO™ Sensor Functions
The sensor functions tend to be robot specific and part of its own Robot Kernel. Table 7 lists the
sensor functions for the TJ PRO™ robot. Technically, IRE_on and IRE_off do not sense
anything. They actuate the IR emitters, i.e., make them shine with 940nm light. They are listed
here for convenient reference.

Some of the sensor functions may be shared with other robots. For example, the TJ™ robot
shares all the sensor functions in Table 7 except BUMPER. The TALRIK II™ robot shares

FRONT_BUMP True if a front bump
 BACK_BUMP True if a back bump

IRE_on Turn on all IR emitters
 IRE_off Turn off all IR emitters

 with both the TJ™ and the TJ PRO™.

Table 7. TJ PRO™ Sensor Functions

Analog Bumper function
 BUMPER Returns bump contact reading

Logical bumper tests
 FRONT_BUMP True if a front bump
 BACK_BUMP True if a back bump

Read IR sensor values
 RIGHT_IR Read right IR sensor value
 LEFT_IR Read left IR sensor value

Control IR emitters
 IRE_on Turn on all IR emitters
 IRE_off Turn off all IR emitters

The numerical value returned by BUMPER permits the TJ PRO™ to identify six different regions of
contact. The other two bumper functions just return logic 0 if no bump occurs when the function
tests the bumper output and logic 1 if a bump occurred during that time. The RIGHT_IR and
LEFT_IR sensors read a value between 84 and 127, depending upon the amount of light reflected
by an object in front of the robot.

6 FINAL COMMENTS
This manual specifies the syntax and semantics of the PROGO™ programming language. A C
preprocessor takes the user code and includes it into a PROGO.c program and replaces the
#define constants with the appropriate character string substitutions to convert a valid PROGO™
program into a valid C program.

IC VARIANT
IC uses PROGOIC.c instead of PROGO.c

 The claim is that PROGO™ is easier to read, understand and remember than C, making it a more
desirable beginner’s language, but powerful enough not to have any severe limitations. Limitations
that do exist can be overcome with C constructs, if necessary.

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

24

For further details concerning the sensor functions of a specific robot and PROGO™ application
programs, refer to the PROGO™ Applications Manual for that robot.

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

25

7 PROGO™ LANGUAGE SUMMARY

PROGO™ Language Statements

User Function List
 Function <function_name1> used
 ...
 Function <function_nameK> used

Declare integer variables
 Dictionary
 <variable>,
 <variable>,
 ...
 <variable>
 ok

Program Start Statement
 Start

Program Brackets
 Program_begin
 Program_end

Function Defintion
 Function <function_name>
 Function_begin
 <block>
 Function_end

Function Call Statement
<function_name> call

Function Return Statement
Return <integer> now

Assignment Statement
 Set <variable> to <expression> ok

Repeat Statement
 Repeat <number> times
 <repeat_block>
 Repeat_end

While Statement
 While <test_expression>
 perform
 <while_block>
 end

Endless While Statement
 Do_forever
 <do_block>
 end

If Statement
 If <test_expression>
 then
 <then_block>
 end
 or_else
 <or_else_block>
 end

If Short Form: If without else
 If <test_expression>
 then
 <then_block>
 end

PROGO™’s Relational, Logic and Arithmetic Operators

Bitwise Logical Operators
bit_and
bit_or
bit_not
bit_xor

C-Symbol
 &
 |
 ~
 ^

Relational Operators
 greater_than
 greater_than_or_equal_to
 less_than
 less_than_or_equal_to
 equal_to
 not_equal_to
 and
 or
 not

 C-Symbol
>
>=
<
<=
==
!=
&&
||
!

Arithmetic plus, minus, times, divide and
modulus
 +, -, *, / , modulo

(Same symbols used in C)

MEKATRONIX™
PROGO™ Language Reference Manual

11/04/98

Gainesville, Florida Phone 407-672-6780

26

Input and Output for PROGO™ Programs

Output from Robot to Personal Computer
 Display “<character string>” on_screen

 Clear_screen
 Home_screen

 Write <variable> on_screen

Cursor Control VT100 Type Terminal
 Move_cursor“<x>”row“<y>”column

Input to the Robot from the Personal Computer
 input_number
 input_character

Robot Motion Function Kernel

Move Robot Forward a Specified Distance
 Fwd <number> inches
 Forward <number> inches

Move Robot back a Specified Distance
 Back <number> inches
 Backward <number> inches

Turn Commands
 Pivot_right <angle> degrees
 Pivot_left <angle> degrees
 Turn_right <angle> degrees
 Turn_left <angle> degrees

 Spinccw Spin counterclockwise
 Spincw Spin clockwise

Robot wheel move commands
 Left_wheel <number> percent
 Right_wheel <number> percent

 Move <number> lws <number> rws
 (lws means left wheel speed)
 (rws means right wheel speed)

Simple Motion Commands
 Go
 Reverse
 Stop

Time Delay Command
 Wait <time_in_ms> ms

TJ PRO™ Sensor Functions

Analog Bumper function
 BUMPER Returns bump contact reading

Logical bumper tests
 FRONT_BUMP True if a front bump
 BACK_BUMP True if a back bump

Read IR sensor values
 RIGHT_IR Read right IR sensor value
 LEFT_IR Read left IR sensor value

Control IR emitters
 IRE_on Turn on all IR emitters
 IRE_off Turn off all IR emitters

