
Chapter 7

IC Manual

Interactive C (IC for short) is a C language consisting of a compiler (with interactive
command-line compilation and debugging) and a run-time machine language module.
IC implements a subset of C including control structures (for, while, if, else), local
and global variables, arrays, pointers, 16-bit and 32-bit integers, and 32-bit
oating
point numbers.

IC works by compiling into pseudo-code for a custom stack machine, rather than
compiling directly into native code for a particular processor. This pseudo-code (or
p-code) is then interpreted by the run-time machine language program. This unusual
approach to compiler design allows IC to o�er the following design tradeo�s:

� Interpreted execution that allows run-time error checking and prevents crash-
ing. For example, IC does array bounds checking at run-time to protect against
programming errors.

� Ease of design. Writing a compiler for a stack machine is signi�cantly eas-
ier than writing one for a typical processor. Since IC's p-code is machine-
independent, porting IC to another processor entails rewriting the p-code inter-
preter, rather than changing the compiler.

� Small object code. Stack machine code tends to be smaller than a native
code representation.

� Multi-tasking. Because the pseudo-code is fully stack-based, a process's state
is de�ned solely by its stack and its program counter. It is thus easy to task-
switch simply by loading a new stack pointer and program counter. This task-
switching is handled by the run-time module, not by the compiler.

Since IC's ultimate performance is limited by the fact that its output p-code is
interpreted, these advantages are taken at the expense of raw execution speed. Still,
IC is no slouch.

115

116 CHAPTER 7. IC MANUAL

IC was designed and implemented by Randy Sargent with the assistance
of Fred Martin.

7.1 Getting Started

This section describes how to boot IC on the 6.270 board using the MIT Athena
computer network. Commands that are typed to the computer are shown underlined
for visibility.

1. Add the 6.270 directory to the execution path. Type the following
command at the Unix prompt:

add 6.270

2. Plug the board into the computer. Using the modular phone cable, plug
the modi�ed end into the DEC or VAX's printer port (indicated by an icon of a
computer printer). Make sure that the exposed wires of the plug are facing up.
If using the VAX2000 computer, use the 9-pin plug adapter.

Plug the other end into the modular jack on the 6811 board. Before the board
is turned on, check that the board's green LED (labelled ser rcv) is lit. If it
is not lit, there is a problem with the connection.

3. Initialize the board. The �rst step is using IC is to load the run-time module
(called the \p-code program") into the board. If the p-code is already loaded,
this step may be skipped. If not:

� Switch the board on. Do not hit the reset button at this time. When the
board is switched on, the yellow LED (labelled ser xmit) should
ash
brie
y and then stay o�. If the yellow LED is lit, the board is not ready to
be initialized. Turn the board o� and on and try again.

� From the Unix prompt, type

init bd

A process should begin that downloads the p-code program to the board.
This will take about 15 to 30 seconds to complete. If the program exits
with an error message, check the connection and try again.

4. Reset the board. Press the reset button on the board to reset it. The following
should happen:

(a) The board will emit a brief beep;

(b) A version message will be printed on the LCD screen (e.g., \IC vX.XX");

7.2. USING IC 117

(c) The yellow LED will turn on brightly.

If these things do not happen, repeat step 3 to initialize the board.

5. Begin IC. From the Unix prompt, type:

IC

At this point, IC will boot, ready to load a C program or evaluate expressions
typed to the IC prompt.

7.2 Using IC

IC is started from the Unix shell by typing ic at the prompt. Some Unix systems
(in particular, MIT Athena DECstations) have an unrelated application named ic.
If this application is �rst in the execution path, it will be invoked rather than the
IC compiler. This situation may be remedied by reordering the execution path to
include the path to the IC compiler �rst, or by using the program name icc, which
will also invoke IC.

IC can be started with the name (or names) of a C �le to compile.

When running and attached to a 6811 system, C expressions, function calls, and
IC commands may be typed at the \C>" prompt.

All C expressions must be ended with a semicolon. For example, to evaluate the
arithmetic expression 1 + 2, type the following:

C> 1 + 2;

When this expression is typed, it is compiled by the console computer and then
downloaded to the 6811 system for evaluation. The 6811 then evaluates the compiled
form and returns the result, which is printed on the console computer's screen.

To evaluate a series of expressions, create a C block by beginning with an open
curly brace \{" and ending with a close curly brace \}". The following example
creates a local variable i and prints the sum i+7 to the 6811's LCD screen:

C> fint i=3; printf("%d", i+7);g

7.2.1 IC Commands

IC responds to the following commands:

118 CHAPTER 7. IC MANUAL

� Load �le. The command load <�lename> compiles and loads the named �le.
The board must be attached for this to work. IC looks �rst in the local directory
and then in the IC library path for �les.

Several �les may be loaded into IC at once, allowing programs to be de�ned in
multiple �les.

� Unload �le. The command unload < �lename > unloads the named �le, and
re-downloads remaining �les.

� List �les, functions, or globals. The command list files displays the
names of all �les presently loaded into IC. The command list functions dis-
plays the names of presently de�ned C functions. The command list globals

displays the names of all currently de�ned global variables.

� Kill all processes. The command kill all kills all currently running pro-
cesses.

� Print process status. The command ps prints the status of currently running
processes.

� Edit a �le. The command edit <�lename> brings up a system editor to
allow editing of a �le. This command is most useful on single-tasking operating
systems, like MS-DOS.

� Run an inferior shell. If IC is running on a MS-DOS system, this command
opens a shell to execute MS-DOS functions.

� Help. The command help displays a help screen of IC commands.

� Quit. The command quit exits IC. ctrl-C can also be used.

7.2.2 Line Editing

IC has a built-in line editor and command history, allowing editing and re-use of
previously typed statements and commands. The mnemonics for these functions are
based on standard Emacs control key assignments.

To scan forward and backward in the command history, type ctrl-P or " for

backward, and ctrl-N or # for forward.
An earlier line in the command history can be retrieved by typing the exclamation

point followed by the �rst few characters of the line to retrieve, and then the space
bar.

Figure 7.1 shows the keystroke mappings understood by IC.
IC does parenthesis-balance-highlighting as expressions are typed.

7.3. A QUICK C TUTORIAL 119

Keystroke Function

del backward-delete-char
ctrl-A beginning-of-line
ctrl-B backward-char
 backward-char
ctrl-D delete-char
ctrl-E end-of-line
ctrl-F forward-char
! forward-char
ctrl-K kill-line
ctrl-U universal-argument
esc D kill-word
esc del backward-kill-word

Figure 7.1: IC Command-Line Keystroke Mappings

7.2.3 The main() Function

After functions have been downloaded to the board, they can be invoked from the IC
prompt. If one of the functions is named main(), it will automatically be run when
the board is reset.

To reset with board without running the main() function (for instance, when
hooking the board back to the computer), hold down one of the two user input
buttons on the board while pressing reset. The board will reset without running
main().

7.3 A Quick C Tutorial

Most C programs consist of function de�nitions and data structures. Here is a simple
C program that de�nes a single function, called main.

void main()
{

printf("Hello, world!\n");
}

All functions must have a return value; that is, the value that they return when
they �nish execution. main has a return value type of void, which is the \null" type.

120 CHAPTER 7. IC MANUAL

Other types include integers (int) and
oating point numbers (float). This function
declaration information must precede each function de�nition.

Immediately following the function declaration is the function's name (in this case,
main). Next, in parentheses, are any arguments (or inputs) to the function. main has
none, but a empty set of parentheses is still required.

After the function arguments is an open curly-brace \f". This signi�es the start
of the actual function code. Curly-braces signify program blocks, or chunks of code.

Next comes a series of C statements. Statements demand that some action be
taken. Our demonstration program has a single statement, a printf (formatted
print). This will print the message \Hello, world!" to the LCD display. The \n

indicates end-of-line.
The printf statement ends with a semicolon (\;"). All C statements must be

ended by a semicolon. Beginning C programmers commonly make the error of omit-
ting the semicolon that is required at the end of each statement.

The main function is ended by the close curly-brace \g".

Let's look at an another example to learn some more features of C. The following
code de�nes the function square, which returns the mathematical square of a number.

int square(int n)
{

return n * n;
}

The function is declared as type int, which means that it will return an integer
value. Next comes the function name square, followed by its argument list in paren-
thesis. square has one argument, n, which is an integer. Notice how declaring the
type of the argument is done similarly to declaring the type of the function.

When a function has arguments declared, those argument variables are valid
within the \scope" of the function (i.e., they only have meaning within the func-
tion's own code). Other functions may use the same variable names independently.

The code for square is contained within the set of curly braces. In fact, it consists
of a single statement: the return statement. The return statement exits the function
and returns the value of the C expression that follows it (in this case \n * n").

Expressions are evaluated according set of precendence rules depending on the
various operations within the expression. In this case, there is only one operation
(multiplication), signi�ed by the *", so precedence is not an issue.

Let's look at an example of a function that performs a function call to the square
program.

float hypotenuse(int a, int b)
{

7.4. DATA TYPES, OPERATIONS, AND EXPRESSIONS 121

float h;

h = sqrt((float)(square(a) + square(b)));

return h;
}

This code demonstrates several more features of C. First, notice that the
oating
point variable h is de�ned at the beginning of the hypotenuse function. In general,
whenever a new program block (indicated by a set of curly braces) is begun, new local
variables may be de�ned.

The value of h is set to the result of a call to the sqrt function. It turns out that
sqrt is a built-in function that takes a
oating point number as its argument.

We want to use the square function we de�ned earlier, which returns its result as
an integer. But the sqrt function requires a
oating point argument. We get around
this type incompatibility by coercing the integer sum (square(a) + square(b)) into
a
oat by preceding it with the desired type, in parentheses. Thus, the integer sum
is made into a
oating point number and passed along to sqrt.

The hypotenuse function �nishes by returning the value of h.

This concludes the brief C tutorial.

7.4 Data Types, Operations, and Expressions

Variables and constants are the basic data objects in a C program. Declarations list
the variables to be used, state what type they are, and may set their initial value.
Operators specify what is to be done to them. Expressions combine variables and
constants to create new values.

7.4.1 Variable Names

Variable names are case-sensitive. The underscore character is allowed and is often
used to enhance the readability of long variable names. C keywords like if, while,
etc. may not be used as variable names.

Global variables and functions may not have the same name. In addition, local
variables named the same as functions prevent the use of that function within the
scope of the local variable.

7.4.2 Data Types

IC supports the following data types:

122 CHAPTER 7. IC MANUAL

16-bit Integers 16-bit integers are signi�ed by the type indicator int. They are
signed integers, and may be valued from �32,768 to +32,767 decimal.

32-bit Integers 32-bit integers are signi�ed by the type indicator long. They are
signed integers, and may be valued from �2,147,483,648 to +2,147,483,647 decimal.

32-bit Floating Point Numbers Floating point numbers are signi�ed by the type
indicator float. They have approximately seven decimal digits of precision and are
valued from about 10�38 to 1038.

8-bit Characters Characters are an 8-bit number signi�ed by the type indicator
char. A character's value typically represents a printable symbol using the standard
ASCII character code.

Arrays of characters (character strings) are supported, but individual characters
are not.

7.4.3 Local and Global Variables

If a variable is declared within a function, or as an argument to a function, its binding
is local, meaning that the variable has existence only that function de�nition.

If a variable is declared outside of a function, it is a global variable. It is de�ned
for all functions, including functions that are de�ned in �les other than the one in
which the global variable was declared.

Variable Initialization

Local and global variables can be initialized when they are declared. If no initializa-
tion value is given, the variable is initialized to zero.

int foo()
{
int x; /* create local variable x

with initial value 0 */
int y= 7; /* create local variable y

with initial value 7 */
...

}

float z=3.0; /* create global variable z
with initial value 3.0 */

Local variables are initialized whenever the function containing them runs.
Global variables are initialized whenever a reset condition occurs. Reset conditions

occur when:

7.4. DATA TYPES, OPERATIONS, AND EXPRESSIONS 123

1. New code is downloaded;

2. The main() procedure is run;

3. System hardware reset occurs.

Persistent Global Variables

A special uninitialized form of global variable, called the \persistent" type, has been
implemented for IC. A persistent global is not initialized upon the conditions listed
for normal global variables.

To make a persistent global variable, pre�x the type speci�er with the key word
persistent. For example, the statement

persistent int i;

creates a global integer called i. The initial value for a persistent variable is
arbitrary; it depends on the contents of RAM that were assigned to it. Initial values
for persistent variables cannot be speci�ed in their declaration statement.

Persistent variables keep their state when the robot is turned o� and on, when
main is run, and when system reset occurs. Persistent variables, in general, will lose
their state when a new program is downloaded. However, it is possible to prevent this
from occurring. If persistent variables are declared at the beginning of the code, before
any function or non-persistent globals, they will be re-assigned to the same location
in memory when the code is re-compiled, and thus their values will be preserved over
multiple downloads.

If the program is divided into multiple �les and it is desired to preserve the values
of persistent variables, then all of the persistent variables should be declared in one
particular �le and that �le should be placed �rst in the load ordering of the �les.

Persistent variables were created with two applications in mind:

� Calibration and con�guration values that do not need to be re-calculated on
every reset condition.

� Robot learning algorithms that might occur over a period when the robot is
turned on and o�.

7.4.4 Constants

Integers

Integers may be de�ned in decimal integer format (e.g., 4053 or -1), hexadecimal
format using the \0x" pre�x (e.g., 0x1fff), and a non-standard but useful binary
format using the \0b" pre�x (e.g., 0b1001001). Octal constants using the zero pre�x
are not supported.

124 CHAPTER 7. IC MANUAL

Long Integers

Long integer constants are created by appending the su�x \l" or \L" (upper- or
lower-case alphabetic L) to a decimal integer. For example, 0L is the long zero.
Either the upper or lower-case \L" may be used, but upper-case is the convention for
readability.

Floating Point Numbers

Floating point numbers may use exponential notation (e.g., \10e3" or \10E3") or
must contain the decimal period. For example, the
oating point zero can be given
as \0.", \0.0", or \0E1", but not as just \0".

Characters and Character Strings

Quoted characters return their ASCII value (e.g., 'x').
Character strings are de�ned with quotation marks, e.g., "This is a character

string.".

7.4.5 Operators

Each of the data types has its own set of operators that determine which operations
may be performed on them.

Integers

The following operations are supported on integers:

� Arithmetic. addition +, subtraction -, multiplication *, division /.

� Comparison. greater-than >, less-than <, equality ==, greater-than-equal >=,
less-than-equal <=.

� Bitwise Arithmetic. bitwise-OR |, bitwise-AND &, bitwise-exclusive-OR ^,
bitwise-NOT .

� Boolean Arithmetic. logical-OR ||, logical-AND &&, logical-NOT !.

When a C statement uses a boolean value (for example, if), it takes the integer
zero as meaning false, and any integer other than zero as meaning true. The
boolean operators return zero for false and one for true.

Boolean operators && and || stop executing as soon as the truth of the �nal
expression is determined. For example, in the expression a && b, if a is false,
then b does not need to be evaluated because the result must be false. The &&
operator \knows this" and does not evaluate b.

7.4. DATA TYPES, OPERATIONS, AND EXPRESSIONS 125

Long Integers

A subset of the operations implemented for integers are implemented for long integers:
arithmetic addition +, subtraction -, and multiplication *, and the integer comparison
operations. Bitwise and boolean operations and division are not supported.

Floating Point Numbers

IC uses a package of public-domain
oating point routines distributed by Motorola.
This package includes arithmetic, trigonometric, and logarithmic functions.

The following operations are supported on
oating point numbers:

� Arithmetic. addition +, subtraction -, multiplication *, division /.

� Comparison. greater-than >, less-than <, equality ==, greater-than-equal >=,
less-than-equal <=.

� Built-in Math Functions. A set of trigonometric, logarithmic, and exponen-
tial functions is supported, as discussed in Section 7.10 of this document.

Characters

Characters are only allowed in character arrays. When a cell of the array is refer-
enced, it is automatically coerced into a integer representation for manipulation by
the integer operations. When a value is stored into a character array, it is coerced
from a standard 16-bit integer into an 8-bit character (by truncating the upper eight
bits).

7.4.6 Assignment Operators and Expressions

The basic assignment operator is =. The following statement adds 2 to the value of
a.

a = a + 2;

The abbreviated form

a += 2;

could also be used to perform the same operation.

All of the following binary operators can be used in this fashion:

+ - * / % << >> & ^ |

126 CHAPTER 7. IC MANUAL

7.4.7 Increment and Decrement Operators

The increment operator \++" increments the named variable. For example, the state-
ment \a++" is equivalent to \a= a+1" or \a+= 1".

A statement that uses an increment operator has a value. For example, the
statement

a= 3;
printf("a=%d a+1=%d\n", a, ++a);

will display the text \a=3 a+1=4."
If the increment operator comes after the named variable, then the value of the

statement is calculated after the increment occurs. So the statement

a= 3;
printf("a=%d a+1=%d\n", a, a++);

would display \a=3 a+1=3" but would �nish with a set to 4.

The decrement operator \--" is used in the same fashion as the increment oper-
ator.

7.4.8 Precedence and Order of Evaluation

The following table summarizes the rules for precedence and associativity for the C
operators. Operators listed earlier in the table have higher precedence; operators on
the same line of the table have equal precedence.

Operator Associativity

() [] left to right
! ~ ++ -- - (type) right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| right to left
= += -= etc. right to left
, left to right

7.5. CONTROL FLOW 127

7.5 Control Flow

IC supports most of the standard C control structures. One notable exception is the
case and switch statement, which is not supported.

7.5.1 Statements and Blocks

A single C statement is ended by a semicolon. A series of statements may be grouped
together into a block using curly braces. Inside a block, local variables may be de�ned.

There is never a semicolon after a right brace that ends a block.

7.5.2 If-Else

The if else statement is used to make decisions. The syntax is:

if (expression)

statement-1
else

statement-2

expression is evaluated; if it is not equal to zero (e.g., logic true), then statement-1
is executed.

The else clause is optional. If the if part of the statement did not execute, and
the else is present, then statement-2 executes.

7.5.3 While

The syntax of a while loop is the following:

while (expression)

statement

while begins by evaluating expression. If it is false, then statement is skipped. If
it is true, then statement is evaluated. Then the expression is evaluated again, and
the same check is performed. The loop exits when expression becomes zero.

One can easily create an in�nite loop in C using the while statement:

while (1)

statement

128 CHAPTER 7. IC MANUAL

7.5.4 For

The syntax of a for loop is the following:

for (expr-1 ; expr-2 ; expr-3)

statement

This is equivalent to the following construct using while:

expr-1 ;

while (expr-2) {

statement
expr-3 ;

}

Typically, expr-1 is an assignment, expr-2 is a relational expression, and expr-3 is
an increment or decrement of some manner. For example, the following code counts
from 0 to 99, printing each number along the way:

int i;
for (i= 0; i < 100; i++)
printf("%d\n", i);

7.5.5 Break

Use of the break provides an early exit from a while or a for loop.

7.6 LCD Screen Printing

IC has a version of the C function printf for formatted printing to the LCD screen.

The syntax of printf is the following:

printf(format-string , [arg-1] , : : :, [arg-N])

This is best illustrated by some examples.

7.6. LCD SCREEN PRINTING 129

7.6.1 Printing Examples

Example 1: Printing a message. The following statement prints a text string to
the screen.

printf("Hello, world!\n");

In this example, the format string is simply printed to the screen.
The character \\n" at the end of the string signi�es end-of-line. When an end-of-

line character is printed, the LCD screen will be cleared when a subsequent character
is printed. Thus, most printf statements are terminated by a \n.

Example 2: Printing a number. The following statement prints the value of the
integer variable x with a brief message.

printf("Value is %d\n", x);

The special form %d is used to format the printing of an integer in decimal format.

Example 3: Printing a number in binary. The following statement prints the
value of the integer variable x as a binary number.

printf("Value is %b\n", x);

The special form %b is used to format the printing of an integer in binary format.
Only the low byte of the number is printed.

Example 4: Printing a
oating point number. The following statement prints
the value of the
oating point variable n as a
oating point number.

printf("Value is %f\n", n);

The special form %f is used to format the printing of
oating point number.

Example 5: Printing two numbers in hexadecimal format.

printf("A=%x B=%x\n", a, b);

The form %x formats an integer to print in hexadecimal.

7.6.2 Formatting Command Summary

Format Command Data Type Description

%d int decimal number
%x int hexadecimal number
%b int low byte as binary number
%c int low byte as ASCII character
%f float
oating point number
%s char array char array (string)

130 CHAPTER 7. IC MANUAL

7.6.3 Special Notes

� The �nal character position of the LCD screen is used as a system \heartbeat."
This character continuously blinks back and forth when the board is operating
properly. If the character stops blinking, the board has failed.

� Characters that would be printed beyond the �nal character position are trun-
cated.

� When using a two-line display, the printf() command treats the display as a
single longer line.

� Printing of long integers is not presently supported.

7.7 Arrays and Pointers

IC supports one-dimensional arrays of characters, integers, long integers, and
oating-
point numbers. Pointers to data items and arrays are supported.

7.7.1 Declaring and Initializing Arrays

Arrays are declared using the square brackets. The following statement declares an
array of ten integers:

int foo[10];

In this array, elements are numbered from 0 to 9. Elements are accessed by enclosing
the index number within square brackets: foo[4] denotes the �fth element of the
array foo (since counting begins at zero).

Arrays are initialized by default to contain all zero values; arrays may also be
initialized at declaration by specifying the array elements, separated by commas,
within curly braces. Using this syntax, the size of the array would not speci�ed
within the square braces; it is determined by the number of elements given in the
declaration. For example,

int foo[]= {0, 4, 5, -8, 17, 301};

creates an array of six integers, with foo[0] equalling 0, foo[1] equalling 4, etc.
Character arrays are typically text strings. There is a special syntax for initializing

arrays of characters. The character values of the array are enclosed in quotation
marks:

char string[]= "Hello there";

7.7. ARRAYS AND POINTERS 131

This form creates a character array called string with the ASCII values of the spec-
i�ed characters. In addition, the character array is terminated by a zero. Because
of this zero-termination, the character array can be treated as a string for purposes
of printing (for example). Character arrays can be initialized using the curly braces
syntax, but they will not be automatically null-terminated in that case. In general,
printing of character arrays that are not null-terminated will cause problems.

7.7.2 Passing Arrays as Arguments

When an array is passed to a function as an argument, the array's pointer is actually
passed, rather than the elements of the array. If the function modi�es the array values,
the array will be modi�ed, since there is only one copy of the array in memory.

In normal C, there are two ways of declaring an array argument: as an array or
as a pointer. IC only allows declaring array arguments as arrays.

As an example, the following function takes an index and an array, and returns
the array element speci�ed by the index:

int retrieve_element(int index, int array[])
{

return array[index];
}

Notice the use of the square brackets to declare the argument array as an array of
integers.

When passing an array variable to a function, use of the square brackets is not
needed:

{
int array[10];

retrieve_element(3, array);
}

7.7.3 Declaring Pointer Variables

Pointers can be passed to functions which then go on to modify the value of the
variable being pointed to. This is useful because the same function can be called to
modify di�erent variables, just by giving it a di�erent pointer.

Pointers are declared with the use of the asterisk (*). In the example

int *foo;
float *bar;

132 CHAPTER 7. IC MANUAL

foo is declared as a pointer to an integer, and bar is declared as a pointer to a
oating
point number.

To make a pointer variable point at some other variable, the ampersand operator
is used. The ampersand operator returns the address of a variable's value; that is,
the place in memory where the variable's value is stored. Thus:

int *foo;
int x= 5;

foo= &x;

makes the pointer foo \point at" the value of x (which happens to be 5).
This pointer can now be used to retrieve the value of x using the asterisk operator.

This process is called de-referencing. The pointer, or reference to a value, is used to
fetch the value being pointed at. Thus:

int y;

y= *foo;

sets y equal to the value pointed at by foo. In the previous example, foo was set to
point at x, which had the value 5. Thus, the result of dereferencing foo yields 5, and
y will be set to 5.

7.7.4 Passing Pointers as Arguments

Pointers can be passed to functions; then, functions can change the values of the vari-
ables that are pointed at. This is termed call-by-reference; the reference, or pointer,
to the variable is given to the function that is being called. This is in contrast to call-
by-value, the standard way that functions are called, in which the value of a variable
is given the to function being called.

The following example de�nes an average sensor function which takes a port
number and a pointer to an integer variable. The function will average the sensor
and store the result in the variable pointed at by result.

In the code, the function argument is speci�ed as a pointer using the asterisk:

void average_sensor(int port, int *result)
{
int sum= 0;
int i;

for (i= 0; i< 10; i++) sum += analog(port);

*result= sum/10;
}

7.8. THE IC LIBRARY FILE 133

Notice that the function itself is declared as a void. It does not need to return
anything, because it instead stores its answer in the pointer variable that is passed
to it.

The pointer variable is used in the last line of the function. In this statement,
the answer sum/10 is stored at the location pointed at by result. Notice that the
asterisk is used to get the location pointed by result.

7.8 The IC Library File

Library �les provide standard C functions for interfacing with hardware on the robot
controller board. These functions are written either in C or as assembly language
drivers. Library �les provide functions to do things like control motors, make tones,
and input sensors values.

IC automatically loads the library �le every time it is invoked. Depending on
which 6811 board is being used, a di�erent library �le will be required. IC may be
con�gured to load di�erent library �les as its default; for the purpose of the 6.270
contest, the on-line version of IC will be con�gured appropriately for the board that
is in use.

As of this writing, there are three related 6811 systems in use: the 1991
6.270 Board (the \Revision 2" board), the 1991 Sensor Robot, and the
1992 6.270 Board (the \Revision 2.1" board). This writing covers the
1992 board only; documentation for the other two systems is available
elsewhere.

On the MIT Athena system, IC library �les are located in the directory /mit/-

6.270/lib/ic. (To understand better how the library functions work, study of the
library �le source code is recommended.) The main library �le for the 1992 6.270
Board is named lib r21.lis.

7.8.1 Output Control

DC Motors

Motor ports are numbered from 0 to 5; ports for motors 0 to 3 are located on the
Microprocessor Board while motors 4 and 5 are located on the Expansion Board.

Motor may be set in a \forward" direction (corresponding to the green motor LED
being lit) and a \backward" direction (corresponding to the motor red LED being
lit).

The functions fd(int m) and bk(int m) turn motor m on or o�, respectively, at
full power. The function off(int m) turns motor m o�.

134 CHAPTER 7. IC MANUAL

The power level of motors may also be controlled. This is done in software by a
motor on and o� rapidly (a technique called pulse-width modulation. The motor(int
m, int p) function allows control of a motor's power level. Powers range from 100

(full on in the forward direction) to -100 (full on the the backward direction). The
system software actually only controls motors to seven degrees of power, but argument
bounds of �100 and +100 are used.

void fd(int m)

Turns motor m on in the forward direction. Example: fd(3);

void bk(int m)

Turns motor m on in the backward direction. Example: bk(1);

void off(int m)

Turns o� motor m. Example: off(1);

void alloff()

void ao()

Turns o� all motors. ao is a short form for alloff.

void motor(int m, int p)

Turns on motor m at power level p. Power levels range from 100 for full on forward
to -100 for full on backward.

Servo Motor

A library routine allows control of a single servo motor. The servo motor has a three-
wire connection: power, ground, and control. The power and ground of the servo
motor connect to the power port labelled pwr out on the Microprocessor Board;
the control wire plugs into the pin labelled D2 of the Port D I/O connector.

The position of the servo motor shaft is controlled by a rectangular waveform
that is generated on the D2 pin. The duration of the positive pulse of the waveform
determines the position of the shaft. This pulse repeats every 20 milliseconds.

The length of the pulse is determined by the value of a library variable.

int servo pulse wavetime

Library variable. Value is the time in half-microseconds of the positive portion of
a rectangular wave that is generated on the Port D2 pin for use in controlling a servo
motor.

7.8. THE IC LIBRARY FILE 135

Initial value is 2000, yielding a pulse time of one millisecond. Values between 1400
and 4000 (.7 to 2 milliseconds) are boundary settings for typical servo motors.

Unidirectional Drivers

LED Drivers There are two output ports located on the Expansion Board that are
suitable for driving LEDs or other small loads. These ports draw their power from
the motor battery and hence will only work when that battery is connected.

The following commands are used to control the LED ports:

void led out0(int s)

Turns on LED0 port if s is non-zero; turns it o� otherwise.

void led out1(int s)

Turns on LED1 port if s is non-zero; turns it o� otherwise.

Expansion Board Motor Ports Motor ports 4 and 5, located on the Expansion
Board, may also be used to control unidirectional devices, such as a solenoid, lamp,
or a motor that needs to be driven in one direction only. Each of the two motor ports,
when used in this fashion, can independently control two such devices.

To use the ports unidirectionally, the two-pin header directly beneath the motor
4 and 5 LEDs is used.

void motor4 left(int s)

Turns on left side of motor 4 port if s is non-zero; turns it o� otherwise.

void motor4 right(int s)

Turns on right side of motor 4 port if s is non-zero; turns it o� otherwise.

void motor5 left(int s)

Turns on left side of motor 5 port if s is non-zero; turns it o� otherwise.

void motor5 right(int s)

Turns on right side of motor 5 port if s is non-zero; turns it o� otherwise.

7.8.2 Sensor Input

int digital(int p)

Returns the value of the sensor in sensor port p, as a true/false value (1 for true
and 0 for false).

136 CHAPTER 7. IC MANUAL

Sensors are expected to be active low, meaning that they are valued at zero volts
in the active, or true, state. Thus the library function returns the inverse of the
actual reading from the digital hardware: if the reading is zero volts or logic zero, the
digital() function will return true.

If the digital() function is applied to port that is implemented in hardware as
an analog input, the result is true if the analog measurement is less than 127, and
false if the reading is greater than or equal to 127.

Ports are numbered as marked on the Microprocessor Board and Expansion Board.

int analog(int p)

Returns value of sensor port numbered p. Result is integer between 0 and 255.
If the analog() function is applied to a port that is implemented digitally in

hardware, then the value 0 is returned if the digital reading is 0, and the value 255 is
returned if the digital reading is 1.

Ports are numbered as marked on the Microprocessor Board and Expansion Board.

int motor force(int m)

Returns value of analog input sensing current level through motor m. Result is
integer between 0 and 255, but typical readings range from about 40 (low force) to
100 (high force).

The force-sensing circuitry functions properly only when motors are operated at
full speed. The circuit returns invalid results when motors are pulse-width modulated
because of spikes that occur in the feedback path.

The force-sensing circuitry is implemented for motors 0 through 3.

int dip switch(int sw)

Returns value of DIP switch sw on interface board. Switches are numbered from
1 to 4 as per labelling on actual switch. Result is 1 if the switch is in the position
labelled \on," and 0 if not.

int dip switches()

Returns value on DIP switches as a four-bit binary number. Left-most switch is
most signi�cant binary digit. \On" position is binary one.

int choose button()

Returns value of button labelled Choose: 1 if pressed and 0 if released.
Example:

/* wait until choose button pressed */
while (!left_button()) {}

7.8. THE IC LIBRARY FILE 137

int escape button()

Returns value of button labelled Escape.
Example:

/* wait for button to be pressed; then
wait for it to be released so that
button press is debounced */

while (!escape_button()) {}
while (escape_button()) {}

Infrared Subsystem

The infrared subsystem is composed of two parts: an infrared transmitter, and in-
frared receivers. Software is provided to control transmission frequency and detection
of infrared light at two frequencies.

Infrared Transmission

void ir transmit on()

Enables transmission of infrared light through ir out port.

void ir transmit off()

Disables transmission of infrared light through ir out port.

void set ir transmit frequency(int period)

Sets infrared transmission frequency. perioddetermines the delay in half-microseconds
between transitions of the infrared waveform. If period is set to 10,000, a frequency
of 100 Hz. will be generated. If period is set to 8,000, a frequency of 125 Hz. will
be generated. The decoding software is capable of detecting transmissions on either
of these two frequencies only.

Upon a reset condition, the infrared transmission frequency is set for 100 Hz. and
is disabled.

Infrared Reception In a typical 6.270 application, one robot will be broadcasting
infrared at 100 Hz. and will set its detection system for 125 Hz. The other robot will
do the opposite. Each robot must physically shield its IR sensors from its own light;
then each robot can detect the emissions of the other.

The infrared reception software employs a phase-locked loop to detect infrared
signals modulated at a particular frequency. This program generates an internal
squarewave at the desired reception frequency and attempts to lock this squarewave
into synchronization with a waveform received by an infrared sensor. If the error

138 CHAPTER 7. IC MANUAL

between the internal wave and the external wave is below some threshold, the exter-
nal wave is considered \detected." The software returns as a result the number of
consecutive detections for each of the infrared sensor inputs.

Up to four infrared sensors may be used. These are plugged into positions 0
through 3 of the digital input port. These ports and the remainder of the digital
input port may be used without con
ict for standard digital input while the infrared
detection software is operating.

The following library functions control the infrared detection system:

void ir receive on()

Enables the infrared reception software. The default is disabled. When the soft-
ware is enabled, between 20% and 30% of the 6811 processor time will be spent
performing the detection function; therefore it should only be enabled if it is being
used.

void ir receive off()

Disables the infrared reception software.

void set ir receive frequency(int f)

Sets the operating frequency for the infrared reception software. f should be 100
for 100 Hz. or 125 for 125 Hz. Default is 100.

int ir counts(int p)

Returns number of consecutive squarewaves at operating frequency detected from
port p of the digital input port. Result is number from 0 to 255. p must be 0, 1, 2,
or 3.

Random noise can cause spurious readings of 1 or 2 detections. The return value
of ir counts() should be greater than three before it is considered the result of a
valid detection.

Shaft Encoders

Machine language drivers are provided to keep count of rapid transitions, as might
occur on a shaft encoder sensor. Two types of shaft encoders are optical, in which
a slotted wheel or black-and-white disk provides visual cues to an optosensor, and
magnetic, in which a small magnet rotates past a magnetic sensor.

In either case, the task of the software consists of counting pulses. To count
accurately, the software uses di�erent thresholds for the rising and falling edge of a
pulse. Hence the signal must rise above an upper threshold before being detecting
as a valid \logic high" of the pulse, and must fall beneath a lower threshold before

7.8. THE IC LIBRARY FILE 139

being detected as a logic low. This method prevents the possibility that the signal
might oscillate rapidly about a single threshold point. (The thresholds will probably
need to be calibrated for the particular performance of each sensor arrangment.)

The software returns a total count of pulses, which may be reset by the user,
and a velocity, consisting of the number of pulses recorded in the most recent 64
milliseconds. The software does not keep track of the direction of rotation of the
shaft.

The software samples the sensor at the rate of 1000 Hz. Therefore the software
cannot detect pulses more rapid that that frequency.

Software Driver Files The library functions for shaft encoders di�er from most
other library functions discussed in that they are not automatically loaded with the
system library. These functions are stored in distinct �les and must be explicitly
loaded by the user when needed.

A separate driver program is implemented for ports 12 through 17 of the Ex-
pansion Board. The �les containing the drivers are named sencdr12.icb through
sencdr17.icb (for ports 12 through 17, respectively) and are located in the IC sys-
tem library. These icb �les must be loaded at the IC command line or from within
a C program's lis �le (as explained in Section 7.14) when needed.

Although the software drivers run in the background, each uses processing time,
and only those which are needed should be loaded. For example, if shaft encoders are
to be used on ports 12 and 13, then the �les sencdr12.icb and sencdr13.icb only
should loaded.

Shaft Encoder Routines The operation of the shaft encoders is controlled mostly
through global variables that are de�ned when the icb �les are loaded. Instead of
calling a library function, getting a measurement from a shaft encoder consists simply
of examining a library variable.

The library routines and variables are named according to the port number they
are designed for and are located in the correspondingly named �le. The following
explanation assumes the �le sencdr12.icb has been loaded.

int encoder12 low threshold

Library variable. Its value determines the logic low level of the pulsetrain being
measured. Should be calibrated for the performance of actual sensor that is used.
Default value is 10; must be between 0 and 255.

int encoder12 high threshold

Library variable. Its value determines the logic high level of the pulsetrain being

140 CHAPTER 7. IC MANUAL

measured. Should be calibrated for the performance of actual sensor that is used.
Default value is 240; must be between 0 and 255.

Example:

/* set threshold points for shaft encoder
on port 12 */

encoder12_low_threshold= 20;
encoder12_high_threshold= 40;

int encoder12 counts

Library variable. Continuously updated count of pulses. Each transition from
high to low and low to high is registered as one count.

May be reset to zero simply by setting the variable to zero:

/* reset port 12 encoder counts to zero */
encoder12_counts= 0;

int encoder12 velocity

Library variable. Updated every 64 milliseconds as the number of counts recorded
over the last 64 millisecond period.

7.8.3 Time Commands

System code keeps track of time passage in milliseconds. The time variables are
implemented using the long integer data type. Standard functions allow use
oating
point variables when using the timing functions.

void reset system time()

Resets the count of system time to zero milliseconds.

long mseconds()

Returns the count of system time in milliseconds. Time count is reset by hardware
reset (i.e., pressing reset switch on board) or the function reset system time().
mseconds() is implemented as a C primitive (not as a library function).

float seconds()

Returns the count of system time in seconds, as a
oating point number. Reso-
lution is one millisecond.

7.9. MULTI-TASKING 141

void sleep(float sec)

Waits for an amount of time equal to or slightly greater than sec seconds. sec
is a
oating point number.

Example:

/* wait for 1.5 seconds */
sleep(1.5);

void msleep(long msec)

Waits for an amount of time equal to or greater than msec milliseconds. msec is
a long integer.

Example:

/* wait for 1.5 seconds */
msleep(1500L);

7.8.4 Tone Functions

Several commands are provided for producing tones on the standard beeper.

void beep()

Produces a tone of 500 Hertz for a period of 0.3 seconds.

void tone(float frequency, float length)

Produces a tone at pitch frequency Hertz for length seconds. Both frequency

and length are
oats.

void set beeper pitch(float frequency)

Sets the beeper tone to be frequency Hz. The subsequent function is then used
to turn the beeper on.

void beeper on()

Turns on the beeper at last frequency selected by the former function.

void beeper off()

Turns o� the beeper.

7.9 Multi-Tasking

7.9.1 Overview

One of the most powerful features of IC is its multi-tasking facility. Processes can be
created and destroyed dynamically during run-time.

142 CHAPTER 7. IC MANUAL

Any C function can be spawned as a separate task. Multiple tasks running the
same code, but with their own local variables, can be created.

Processes communicate through global variables: one process can set a global to
some value, and another process can read the value of that global.

Each time a process runs, it executes for a certain number of ticks, de�ned in
milliseconds. This value is determined for each process at the time it is created. The
default number of ticks is �ve; therefore, a default process will run for 5 milliseconds
until its \turn" ends and the next process is run. All processes are kept track of in a
process table; each time through the table, each process runs once (for an amount of
time equal to its number of ticks).

Each process has its own program stack. The stack is used to pass arguments for
function calls, store local variables, and store return addresses from function calls.
The size of this stack is de�ned at the time a process is created. The default size of
a process stack is 256 bytes.

Processes that make extensive use of recursion or use large local arrays will prob-
ably require a stack size larger than the default. Each function call requires two stack
bytes (for the return address) plus the number of argument bytes; if the function that
is called creates local variables, then they also use up stack space. In addition, C
expressions create intermediate values that are stored on the stack.

It is up to the programmer to determine if a particular process requires a stack
size larger than the default. A process may also be created with a stack size smaller
than the default, in order to save stack memory space, if it is known that the process
will not require the full default amount.

When a process is created, it is assigned a unique process identi�cation number or
pid. This number can be used to kill a process.

7.9.2 Creating New Processes

The function to create a new process is start process. start process takes one
mandatory argument|the function call to be started as a process. There are two
optional arguments: the process's number of ticks and stack size. (If only one optional
argument is given, it is assumed to be the ticks number, and the default stack size is
used.)

start process has the following syntax:

int start process(function-call(: : :) , [TICKS] , [STACK-SIZE])

start process returns an integer, which is the process ID assigned to the new pro-
cess.

The function call may be any valid call of the function used. The following code
shows the function main creating a process:

7.9. MULTI-TASKING 143

void check_sensor(int n)
{

while (1)
printf("Sensor %d is %d\n", n, digital(n));

}

void main()
{

start_process(check_sensor(2));
}

Normally when a C functions ends, it exits with a return value or the \void" value.
If a function invoked as a process ends, it \dies," letting its return value (if there was
one) disappear. (This is okay, because processes communicate results by storing them
in globals, not by returning them as return values.) Hence in the above example, the
check sensor function is de�ned as an in�nite loop, so as to run forever (until the
board is reset or a kill process is executed).

Creating a process with a non-default number of ticks or a non-default stack size
is simply a matter of using start process with optional arguments; e.g.

start_process(check_sensor(2), 1, 50);

will create a check sensor process that runs for 1 milliseconds per invocation and
has a stack size of 50 bytes (for the given de�nition of check sensor, a small stack
space would be su�cient).

7.9.3 Destroying Processes

The kill process function is used to destroy processes. Processes are destroyed by
passing their process ID number to kill process, according to the following syntax:

int kill process(int pid)

kill process returns a value indicating if the operation was successful. If the return
value is 0, then the process was destroyed. If the return value is 1, then the process
was not found.

The following code shows the main process creating a check sensor process, and
then destroying it one second later:

void main()
{

int pid;

pid= start_process(check_sensor(2));
sleep(1.0);
kill_process(pid);

}

144 CHAPTER 7. IC MANUAL

7.9.4 Process Management Commands

IC has two commands to help with process management. The commands only work
when used at the IC command line. They are not C functions that can be used in
code.

kill all

kills all currently running processes.

ps

prints out a list of the process status.
The following information is presented: process ID, status code, program counter,

stack pointer, stack pointer origin, number of ticks, and name of function that is
currently executing.

7.9.5 Process Management Library Functions

The following functions are implemented in the standard C library.

void hog processor()

Allocates an additional 256 milliseconds of execution to the currently running
process. If this function is called repeatedly, the system will wedge and only execute
the process that is calling hog processor(). Only a system reset will unwedge from
this state. Needless to say, this function should be used with extreme care, and should
not be placed in a loop, unless wedging the machine is the desired outcome.

void defer()

Makes a process swap out immediately after the function is called. Useful if a
process knows that it will not need to do any work until the next time around the
scheduler loop. defer() is implemented as a C built-in function.

7.10 Floating Point Functions

In addition to basic
oating point arithmetic (addition, subtraction, multiplication,
and division) and
oating point comparisons, a number of exponential and transcen-
dental functions are built in to IC:

float sin(float angle)

Returns sine of angle. Angle is speci�ed in radians; result is in radians.

7.11. MEMORY ACCESS FUNCTIONS 145

float cos(float angle)

Returns cosine of angle. Angle is speci�ed in radians; result is in radians.

float tan(float angle)

Returns tangent of angle. Angle is speci�ed in radians; result is in radians.

float atan(float angle)

Returns arc tangent of angle. Angle is speci�ed in radians; result is in radians.

float sqrt(float num)

Returns square root of num.

float log10(float num)

Returns logarithm of num to the base 10.

float log(float num)

Returns natural logarithm of num.

float exp10(float num)

Returns 10 to the num power.

float exp(float num)

Returns e to the num power.

(float) a ^ (float) b

Returns a to the b power.

7.11 Memory Access Functions

IC has primitives for directly examining and modifying memory contents. These
should be used with care as it would be easy to corrupt memory and crash the
system using these functions.

There should be little need to use these functions. Most interaction with system
memory should be done with arrays and/or globals.

int peek(int loc)

Returns the byte located at address loc.

int peekword(int loc)

Returns the 16-bit value located at address loc and loc+1. loc has the most
signi�cant byte, as per the 6811 16-bit addressing standard.

146 CHAPTER 7. IC MANUAL

void poke(int loc, int byte)

Stores the 8-bit value byte at memory address loc.

void pokeword(int loc, int word)

Stores the 16-bit value word at memory addresses loc and loc+1.

void bit set(int loc, int mask)

Sets bits that are set in mask at memory address loc.

void bit clear(int loc, int mask)

Clears bits that are set in mask at memory address loc.

7.12 Error Handling

There are two types of errors that can happen when working with IC: compile-time
errors and run-time errors.

Compile-time errors occur during the compilation of the source �le. They are
indicative of mistakes in the C source code. Typical compile-time errors result from
incorrect syntax or mis-matching of data types.

Run-time errors occur while a program is running on the board. They indicate
problems with a valid C form when it is running. A simple example would be a divide-
by-zero error. Another example might be running out of stack space, if a recursive
procedure goes too deep in recursion.

These types of errors are handled di�erently, as is explained below.

7.12.1 Compile-Time Errors

When compiler errors occur, an error message is printed to the screen. All compile-
time errors must be �xed before a �le can be downloaded to the board.

7.12.2 Run-Time Errors

When a run-time error occurs, an error message is displayed on the LCD screen
indicating the error number. If the board is hooked up to ICwhen the error occurs, a
more verbose error message is printed on the terminal.

Here is a list of the run-time error codes:

7.13. BINARY PROGRAMS 147

Error Code Description

1 no stack space for start process()

2 no process slots remaining
3 array reference out of bounds
4 stack over
ow error in running process
5 operation with invalid pointer
6
oating point under
ow
7
oating point over
ow
8
oating point divide-by-zero
9 number too small or large to convert to integer
10 tried to take square root of negative number
11 tangent of 90 degrees attempted
12 log or ln of negative number or zero
15
oating point format error in printf
16 integer divide-by-zero

7.13 Binary Programs

With the use of a customized 6811 assembler program, IC allows the use of machine
language programs within the C environment. There are two ways that machine
language programs may be incorporated:

1. Programs may be called from C as if they were C functions.

2. Programs may install themselves into the interrupt structure of the 6811, run-
ning repetitiously or when invoked due to a hardware or software interrupt.

When operating as a function, the interface between C and a binary program is
limited: a binary program must be given one integer as an argument, and will return
an integer as its return value. However, programs in a binary �le can declare any
number of global integer variables in the C environment. Also, the binary program
can use its argument as a pointer to a C data structure.

7.13.1 The Binary Source File

Special keywords in the source assembly language �le (or module) are used to establish
the following features of the binary program:

Entry point. The entry point for calls to each program de�ned in the binary �le.

148 CHAPTER 7. IC MANUAL

Initialization entry point. Each �le may have one routine that is called automati-
cally upon a reset condition. (The reset conditions are explained in Section 7.4.3,
which discusses global variable initialization.) This initialization routine par-
ticularly useful for programs which will function as interrupt routines.

C variable de�nitions. Any number of two-byte C integer variables may be de-
clared within a binary �le. When the module is loaded into IC, these variables
become de�ned as globals in C.

To explain how these features work, let's look at a sample IC binary source pro-
gram, listed in Figure 7.2.

/* Sample icb file */

/* origin for module and variables */
ORG MAIN_START

/* program to return twice the argument passed to us */
subroutine_double:

ASLD
RTS

/* declaration for the variable "foo" */
variable_foo:

FDB 55

/* program to set the C variable "foo" */
subroutine_set_foo:

STD variable_foo
RTS

/* program to retrieve the variable "foo" */
subroutine_get_foo:

LDD variable_foo
RTS

/* code that runs on reset conditions */
subroutine_initialize_module:

LDD #69
STD variable_foo
RTS

Figure 7.2: Sample IC Binary Source File: testicb.asm

The �rst statement of the �le (\ORG MAIN START") declares the start of the binary
programs. This line must precede the code itself itself.

The entry point for a program to be called from C is declared with a special form
beginning with the text subroutine . In this case, the name of the binary program

7.13. BINARY PROGRAMS 149

is double, so the label is named subroutine double. As the comment indicates, this
is a program that will double the value of the argument passed to it.

When the binary program is called from C, it is passed one integer argument. This
argument is placed in the 6811's D register (also known as the \Double Accumulator")
before the binary code is called.

The double program doubles the number in the D register. The ASLD instruction
(\Arithmetic Shift Left Double [Accumulator]") is equivalent to multiplying by 2;
hence this doubles the number in the D register.

The RTS instruction is \Return from Subroutine." All binary programs must exit
using this instruction. When a binary program exits, the value in the D register is
the return value to C. Thus, the double program doubles its C argument and returns
it to C.

Declaring Variables in Binary Files

The label variable foo is an example of a special form to declare the name and
location of a variable accessable from C. The special label pre�x \variable " is
followed the name of the variable, in this case, \foo."

This label must be immediately followed by the statement FDB <number>. This
is an assembler directive that creates a two-byte value (which is the initial value of
the variable).

Variables used by binary programs must be declared in the binary �le. These
variables then become C globals when the binary �le is loaded into C.

The next binary program in the �le is named \set foo." It performs the action of
setting the value of the variable foo, which is de�ned later in the �le. It does this by
storing the D register into the memory contents reserved for foo, and then returning.

The next binary program is named \get foo." It loads the D register from the
memory reserved for foo and then returns.

Declaring an Initialization Program

The label subroutine initialize module is a special form used to indicate the entry
point for code that should be run to initialize the binary programs. This code is run
upon standard reset conditions: program download, hardware reset, or running of the
main() function.

In the example shown, the initialization code stores the value 69 into the location
reserved for the variable foo. This then overwrites the 55 which would otherwise be
the default value for that variable.

Initialization of globals variables de�ned in an binary module is done di�erently
than globals de�ned in C. In a binary module, the globals are initialized to the value

150 CHAPTER 7. IC MANUAL

 6811 interrupt vector
(dedicated RAM position)

 6.270 system
 software
interrupt driver

RTI
Return from Interrupt
 instruction

Before User Program Installation

Figure 7.3: Interrupt Structure Before User Program Installation

declared by the FDB statement only when the code is downloaded to the 6811 board
(not upon reset or running of main, like normal globals).

However, the initialization routine is run upon standard reset conditions, and can
be used to initialize globals, as this example has illustrated.

7.13.2 Interrupt-Driven Binary Programs

Interrupt-driven binary programs use the initialization sequence of the binary module
to install a piece of code into the interrupt structure of the 6811.

The 6811 has a number of di�erent interrupts, mostly dealing with its on-chip
hardware such as timers and counters. One of these interrupts is used by the 6.270
software to implement time-keeping and other periodic functions (such as LCD screen
management). This interrupt, dubbed the \System Interrupt," runs at 1000 Hertz.

Instead of using another 6811 interrupt to run user binary programs, additional
programs (that need to run at 1000 Hz. or less) may install themselves into the
System Interrupt. User programs would be then become part of the 1000 Hz interrupt
sequence.

This is accomplished by having the user program \intercept" the original 6811
interrupt vector that points to 6.270 interrupt code. This vector is made to point
at the user program. When user program �nishes, it jumps to the start of the 6.270
interrupt code.

7.13. BINARY PROGRAMS 151

JMP

 6811 interrupt vector
(dedicated RAM position)

 6.270 system
 software
interrupt driver

RTI
Return from Interrupt
 instruction

 User assembly
language program

Jump instruction

After User Program Installation

Figure 7.4: Interrupt Structure After User Program Installation

152 CHAPTER 7. IC MANUAL

Figure 7.3 depicts the interrupt structure before user program installation. The
6811 vector location points to system software code, which terminates in a \return
from interrupt" instruction.

Figure 7.4 illustrates the result after the user program is installed. The 6811
vector points to the user program, which exits by jumping to the system software
driver. This driver exits as before, with the RTI instruction.

Multiple user programs could be installed in this fashion. Each one would install
itself ahead of the previous one. Some standard 6.270 library functions, such as the
shaft encoder software, is implemented in this fashion.

Figure 7.5 shows an example program that installs itself into the System Interrupt.
This program toggles the signal line controlling the piezo beeper every time it is run;
since the System Interrupt runs at 1000 Hz., this program will create a continous
tone of 500 Hz.

The �rst line after the comment header includes a �le named \6811regs.asm".
This �le contains equates for all 6811 registers and interrupt vectors; most binary
programs will need at least a few of these. It is simplest to keep them all in one �le
that can be easily included. (This and other �les included by the as11 assembler are
located in the assembler's default library directory, which is /mit/6.270/lib/as11/
on the MIT Athena system.)

The subroutine initialize module declaration begins the initialization portion
of the program. The �le \ldxibase.asm" is then included. This �le contains a few
lines of 6811 assembler code that perform the function of determining the base pointer
to the 6811 interrupt vector area, and loading this pointer into the 6811 X register.

The following four lines of code install the interrupt program (beginning with
the label interrupt code start) according to the method that was illustrated in
Figure 7.4.

First, the existing interrupt pointer is fetched. As indicated by the comment, the
6811's TOC4 timer is used to implement the System Interrupt. The vector is poked
into the JMP instruction that will conclude the interrupt code itself.

Next, the 6811 interrupt pointer is replaced with a pointer to the new code. These
two steps complete the initialization sequence.

The actual interrupt code is quite short. It toggles bit 3 of the 6811's PORTA
register. The PORTA register controls the eight pins of Port A that connect to
external hardware; bit 3 is connected to the piezo beeper.

The interrupt code exits with a jump instruction. The argument for this jump is
poked in by the initialization program.

The method allows any number of programs located in separate �les to attach
themselves to the System Interrupt. Because these �les can be loaded from the C
environment, this system a�ords maximal
exibility to the user, with small overhead
in terms of code e�ciency.

7.13. BINARY PROGRAMS 153

* icb file: "sysibeep.asm"

*
* example of code installing itself into
* SystemInt 1000 Hz interrupt
*
* Fred Martin
* Thu Oct 10 21:12:13 1991
*

#include <6811regs.asm>

ORG MAIN_START

subroutine_initialize_module:

#include <ldxibase.asm>
* X now has base pointer to interrupt vectors ($FF00 or $BF00)

* get current vector; poke such that when we finish, we go there
LDD TOC4INT,X ; SystemInt on TOC4
STD interrupt_code_exit+1

* install ourself as new vector
LDD #interrupt_code_start
STD TOC4INT,X

RTS

* interrupt program begins here
interrupt_code_start:
* frob the beeper every time called

LDAA PORTA
EORA #%00001000 ; beeper bit
STAA PORTA

interrupt_code_exit:
JMP $0000 ; this value poked in by init routine

Figure 7.5: sysibeep.asm: Binary Program that Installs into System Interrupt

154 CHAPTER 7. IC MANUAL

7.13.3 The Binary Object File

The source �le for a binary program must be named with the .asm su�x. Once
the .asm �le is created, a special version of the 6811 assembler program is used to
construct the binary object code. This program creates a �le containing the assembled
machine code plus label de�nitions of entry points and C variables.

S116802005390037FD802239FC802239CC0045FD8022393C
S9030000FC
S116872B05390037FD872D39FC872D39CC0045FD872D39F4
S9030000FC
6811 assembler version 2.1 10-Aug-91
please send bugs to Randy Sargent (rsargent@athena.mit.edu)
original program by Motorola.

subroutine_double 872b *0007
subroutine_get_foo 8733 *0021
subroutine_initialize_module 8737 *0026
subroutine_set_foo 872f *0016
variable_foo 872d *0012 0017 0022 0028

Figure 7.6: Sample IC Binary Object File: testicb.icb

The program as11 ic is used to assemble the source code and create a binary
object �le. It is given the �lename of the source �le as an argument. The resulting
object �le is automatically given the su�x .icb (for IC Binary). Figure 7.6 shows
the binary object �le that is created from the testicb.asm example �le.

7.13.4 Loading an icb File

Once the .icb �le is created, it can be loaded into IC just like any other C �le. If
there are C functions that are to be used in conjunction with the binary programs,
it is customary to put them into a �le with the same name as the .icb �le, and then
use a .lis �le to loads the two �les together.

7.13.5 Passing Array Pointers to a Binary Program

A pointer to an array is a 16-bit integer address. To coerce an array pointer to an
integer, use the following form:

array ptr= (int) array;

where array ptr is an integer and array is an array.
When compiling code that performs this type of pointer conversion, IC must

be used in a special mode. Normally, IC does not allow certain types of pointer

7.14. IC FILE FORMATS AND MANAGEMENT 155

manipulation that may crash the system. To compile this type of code, use the
following invokation:

ic -wizard

Arrays are internally represented with a two-byte length value followed by the
array contents.

7.14 IC File Formats and Management

This section explains how IC deals with multiple source �les.

7.14.1 C Programs

All �les containing C code must be named with the \.c" su�x.
Loading functions from more than one C �le can be done by issuing commands

at the IC prompt to load each of the �les. For example, to load the C �les named
foo.c and bar.c:

C> load foo.c

C> load bar.c

Alternatively, the �les could be loaded with a single command:

C> load foo.c bar.c

If the �les to be loaded contain dependencies (for example, if one �le has a function
that references a variable or function de�ned in the other �le), then the second method
(multiple �le names to one load command) or the following approach must be used.

7.14.2 List Files

If the program is separated into multiple �les that are always loaded together, a \list
�le" may be created. This �le tells IC to load a set of named �les. Continuing the
previous example, a �le called gnu.lis can be created:

Listing of gnu.lis:

foo.c

bar.c

Then typing the command load gnu.lis from the C prompt would cause both
foo.c and bar.c to be loaded.

156 CHAPTER 7. IC MANUAL

7.14.3 File and Function Management

Unloading Files

When �les are loaded into IC, they stay loaded until they are explicitly unloaded.
This is usually the functionality that is desired. If one of the program �les is being
worked on, the other ones will remain in memory so that they don't have to be
explicitly re-loaded each time the one undergoing development is reloaded.

However, suppose the �le foo.c is loaded, which contains a de�nition for the func-
tion main. Then the �le bar.c is loaded, which happens to also contain a de�nition
for main. There will be an error message, because both �les contain a main. IC will
unload bar.c, due to the error, and re-download foo.c and any other �les that are
presently loaded.

The solution is to �rst unload the �le containing the main that is not desired, and
then load the �le that contains the new main:

C> unload foo.c

C> load bar.c

7.15 Con�guring IC

IC has a multitude of command-line switches that allow control of a number of things.
Explanations for these switches can be gotten by issuing the command \ic -help".

IC stores the search path for and name of the library �les internally; theses may
be changed by executing the command \ic -config". When this command is run,
IC will prompt for a new path and library �le name, and will create a new executable
copy of itself with these changes.

